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Abstract

An important problem pertaining to MPSoCs is that of intelligently mapping (i.e. assigning)
computational tasks to processing elements, often at runtime.

Whether some mapping is comparatively better than another usually depends on application
specific optimality criteria that can only be evaluated by use of computationally expensive simula-
tion. Thus there is a need to reduce the potentially very large mapping search space.

This thesis concerns itself with what we refer to as symmetry reduction, a technique that achieves
this search space reduction by exploiting symmetries inherent in many MPSoC architecutures and
which can be used in conjunction with existing methods that heuristically traverse the search space.

For this purpose we make use of well-established, as well as some recent state of the art methods
originated by researchers in the field of computational group theory (CGT), a branch of computa-
tional mathematics that concerns itself with the representation and analysis of many of the algebraic
structures underlying group theory. We evaluate symmetry reduction results achieved by use of
mpsym [13], a framework written from the ground up specifically to address symmetry reduction.
We demonstrate that mpsym is fast, especially for architectures that are hierarchical in nature, and
that it outperforms comparable general purpose CGT frameworks like GAP [8].
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Chapter 1

Introduction

1.1 Structure

We begin by informally describing the problem this thesis addresses in Section 1.2 and elaborate
on what we mean by symmetry reduction in Section 1.3. Chapter 2 then introduces some necessary
fundamentals of computational group theory in an accessible manner, focussing on the representa-
tion of permutation groups and partial permutation inverse monoids, algebraic structures we will
use to capture the symmetries inherent in MPSoC architectures. In Chapter 3 we separately discuss
an especially important topic touched on in Chapter 2 in greater detail: construction of a so called
base and strong generating set for a given permutation group. In Chapter 4 we then outline how to
describe common MPSoC architectures mathematically and how to algorithmically transform these
descriptions into the symmetry capturing algebraic structures introduced in Chapter 2. Equipped
with these fundamentals, we then revisit symmetry reduction in Chapter 5 were we discuss it in a
more formal manner and present several algorithms to address it. Finally, in Chapter 6 we present
some experimental results obtained by use of mpsym.

1.2 Problem Statement

An MPSoC is a circuit that integrates several electronic components required to form a full-fledged
computing system, i.e. multiple, often heterogeneous, processing elements as well as memory and
I/O components. MPSoCs are often found in embedded applications in domains like multimedia or
telecommunication where their specific makeup can meet specialized demands like high throughput,
low energy consumption or adaptability thereof.

An important problem pertaining to MPSoCs is that of intelligently mapping (i.e. assigning)
computational tasks to processing elements, often at runtime. These computational tasks can be
both independent or interoperating programs with potentially very different hardware requirements.

To clarify, consider the abstract MPSoC architecture presented in Figure 1.1, a cluster of pro-
cessing elements, connected in a regular mesh fashion by a number of communication channels. A
processing element could for example represent a single core of some CPU while a communication
channel might be a wired or wireless connection or shared memory. For now we assume that all
processing elements and communication channels are effectively identical.
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Figure 1.1: m× n regular mesh abstract MPSoC architecture.

Imagine that we have k distinct computational tasks that we would like to run on this architec-
ture concurrently1. For simplicity we will assume that each task can run on any processing element
and every processing element can run at most one task.

Which way of mapping these k tasks to the m · n processing elements is “the best” depends
on underlying optimality criteria which can vary from application to application. These could
e.g. be highest possible throughput, lowest energy consumption, a trade-off between the two or
some even more complicated application-specific criteria. Unfortunately, for any such criteria we
cannot work with an abstract MPSoC architecture alone because we need to consider “real-world”
processing element and communication channel characteristics such as instructions per second,
power consumption, latency, bandwidth etc.

In general, finding the optimal task mapping under these conditions requires evaluating our
specific criteria for every possible task mapping. This evaluation step usually requires time and
hardware expensive computer simulation and for our example we would have to perform it (m ·
n)!/((m · n)− k)! times which quickly becomes unfeasible as m/n and k grow.

Thus, it is of great importance to find a general way to reduce the size of the task mapping
“search space”. One possible approach to this problem is to traverse the task mapping search space
systematically, e.g. by generating “promising” new task mappings based on the performance of
previously evaluated ones via a genetic algorithm.

1I.e. not necessarily in parallel.
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1.3 Symmetry Reduction

The aim of this thesis is to describe and evaluate a very different method of addressing large task
mapping search spaces which “collapses” the task mapping search space via symmetry reduction, a
technique based on the observation that some task mappings are necessarily equivalent by symmetry
and thus do not need to be simulated separately. This idea is based on previous work presented
in [7]. A set of “equivalent” task mappings in this context is a set of task mappings that will
necessarily exhibit the same runtime behaviour (apart from minor differences due to e.g. non-
identical behaviour of equivalent hardware components elements).

To clarify what we mean when we talk about equivalence by symmetry, consider again the task
mapping problem for k = 4 for the abstract MPSoC architecture introduced in Figure 1.1, this time
for the specific case m = n = 4. Figure 1.2 shows four distinct possible mappings of the four tasks
to the given abstract MPSoC architecture.

On close inspection we find that task mappings (a) and (b) are not equivalent because tasks
two and three might not be interchangeable and thus the “communication structure” among the
four tasks in (a) and (b) is different. On the other hand, task mappings (a) and (c) are equivalent
since this communication structure is preserved.

A more tricky question is whether task mappings (a) and (c) are equivalent to task mapping (d).
Technically this is not the case because for task mapping (d) some additional communication paths
exist between the tasks. For instance, task one and two can communicate over two paths made up
of three consecutive communication channels as opposed to just one, as indicated in red2. However,
in practice it would most likely make sense to treat task mapping (a), (b) and (d) as equivalent.
We say that that task mappings (a) and (b) are equivalent under symmetry and both of them are
equivalent to task mapping (d) under partial symmetry. We will formalize these concepts later.

Symmetry reduction makes use of these task mapping equivalencies by partitioning the task
mapping search space into sets of tasks that are equivalent under (partial) symmetry. From then
on only one “representative” of each of these sets needs to be considered for simulation. Because
the problem of finding these representatives is so central to the symmetry reduction approach, we
introduce the term task mapping orbit representative problem (short TMOR problem) to describe
it, the meaning behind which will become apparent in Chapter 5.

The symmetry reduction approach was first proposed in [7]. It can be easily combined with
heuristic methods for traversing the task mapping space. As we shall see in Chapter 6, the overhead
introduced by symmetry reduction is usually small.

2Whether both these communication channels are actually valid of course depends on the concrete routing algo-
rithm employed but we will not consider this here.
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(a) (b)

(c) (d)

Figure 1.2: Four possible mappings of four tasks to a 4× 4 regular mesh MPSoC architecture.
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Chapter 2

Theoretical and Computational
Foundations

In the following sections we will introduce some mathematical notation and definitions and present
important theorems and algorithms from the field of computational group theory. In each of these
sections we will first introduce some mathematical object via a series of definitions and then discuss
algorithms and data structures with which we can construct and represent instances of this object
in a computer program. Hereby we lay the foundation we need to formalize the TMOR problem in
Section 5.1 and to understand the algorithms presented in Section 5.2 that address it.

Sections 2.1 and 2.2 will introduce permutations and permutation groups with which we can
represent symmetries inherent in MPSoC architectures. Sections 2.3 and 2.4 will introduce par-
tial permutations and partial permutation inverse monoids with which we can represent partial
symmetries as well, making them potentially more powerful.

For general literature on group theory including permutations and permutation groups, refer to
[15]. For an extensive treatment of inverse monoids refer to [11] and for a comprehensive overview
of computational group theory refer to [10], [2] and [17].

2.1 Permutations

2.1.1 Motivation

Permutations are a useful mathematical tool when it comes to describing symmetries of systems.
To illustrate this point, let us consider isomorphisms and automorphisms of undirected1 graphs
and how we can describe them mathematically.

1While we only consider undirected graphs here for simplicity, the following concepts can easily be extended to
directed graphs as well.
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Definition 2.1: Undirected Graph

An undirected graph is a tuple G = (V,E) where V = {1, 2, . . . , n | n ∈ N} is a set of vertex
indices and E ⊆ {{x, y} | i, j ∈ V } with {i, j} ∈ E ⇔ a graph edge exists between the ith
and jth vertex.

Example 2.1: Undirected Graph

Consider the undirected graph G = (V,E), with V = {1, 2, 3, 4} and E =
{{1, 2}, {2, 3}, {3, 4}, {4, 1}} visualized in Figure 2.1.

1 2

34

Figure 2.1: An undirected graph with four vertices and edges.

Definition 2.2: Graph Isomorphism

Given two undirected graphs G = (VG, EG) and H = (VH , EH), an isomorphism is a bijective
function isom : VG → VH with {i, j} ∈ EG ⇔ {isom(i), isom(j)} ∈ EH . If such a function
exists we also say that G and H are isomorphic.

Example 2.2: Graph Isomorphism

Consider the two undirected graphs G = (VG, EG) and H = (VH , EH) visualized in Fig-
ure 2.2.

1 2

34

(a) G

1 2

34

(b) H

Figure 2.2: Two isomorphic graphs.

The function isom : VG → VH with:

isom(1) = 2, isom(2) = 3, isom(3) = 4, isom(4) = 1

7



is an isomorphism from G to H. We can easily see that this is true by verifying that
{{isom(i), isom(j)} | {i, j} ∈ EG} = EH :

EG = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}
⇓

EH = {{2, 3}, {2, 4}, {3, 4}, {4, 1}}

Note that isomorphisms are structure preserving, i.e. G and H are the same graph aside
from the differently numbered vertices.

Definition 2.3: Graph Automorphism

Given an undirected graph G = (V,E), an automorphism of G autom : V → V is an isomor-
phism from G to itself.

Example 2.3: Graph Automorphism

Consider again the undirected graph G from Example 2.1 and the function autom : V → V
with:

autom(1) = 2, autom(2) = 3, autom(3) = 4, autom(4) = 1

Renumbering the vertices of G according to autom results in the graph G′ visualized in
Figure 2.3b.

1 2

34

(a) G

4 1

23

(b) G′

Figure 2.3: A graph automorphism.

Notice that this graph and G are not only isomorphic but identical, making autom an
automorphism of G. Geometrically, if we interpret the vertices of G as the edges of a square,
we can view autom as a 90° right rotation of that square about its center (as indicated by
the red arrow in Figure 2.3a).

Graph automorphisms can thus express symmetries, e.g. rotational symmetry in Example 2.3,
inherent in a graph. As per Definition 2.3, every automorphism is a bijective function from a set
to itself. Such functions are exactly the permutations that this section is concerned with.
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2.1.2 Definition

Definition 2.4: Permutation

A permutation is a bijection from a set Ω to itself.

We say that a permutation g stabilizes some x ∈ Ω if g(x) = x and denote the identity permutation
that stabilizes all x ∈ Ω by 1.

We usually denote permutations with the letters g and h and notate them in either two-line
notation or cycle notation. The former displays x and g(x) on top of each other for each x ∈ Ω
in a 2 × |Ω| matrix. The latter denotes a permutation as a sequence of disjoint cycles where each
element in a cycle is mapped to the next one by g (in a cyclic fashion) and cycles of length one are
omitted. We denote the identity permutation as () in cycle notation.

In the context of this thesis we are mostly concerned with the case Ω ⊆ N+, or more specifically
Ω = Ωn = {1, 2, . . . , n} where we refer to n as the degree of permutations of Ωn. Unless otherwise
noted, it is assumed that Ω has this form and we also write deg(g) instead of n.

Example 2.4: Permutation

Let g : Ω5 → Ω5 such that:

g(1) = 2, g(2) = 1, g(3) = 3, g(4) = 5, g(5) = 4

Then we can more compactly write g as:

g =

(
1 2 3 4 5
2 1 3 5 4

)
or:

g = (1 2)(4 5)

Two more important concepts are the composition of two permutations and the inverse of a per-
mutation:

Definition 2.5: Permutation Composition

The composition of two permutations g, h : Ω→ Ω is another permutation gh : Ω→ Ω such
that ∀x ∈ Ω : gh(x) = g(h(x)). Note that this operation is associative but not commutative.

Definition 2.6: Permutation Inverse

The inverse of a permutation g : Ω → Ω is another permutation g−1 : Ω → Ω such that
gg−1 = g−1g = 1.

9



Example 2.5: Permutation Inverse

Let g be as in Example 2.4 and h = (1 2 3 4) Then we have:

gh =

(
1 2 3 4 5
3 2 4 5 1

)
= (1 3 4 5)

hg =

(
1 2 3 4 5
1 3 5 2 4

)
= (2 3 5 4)

And:

g−1 = g

h−1 =

(
1 2 3 4 5
4 1 2 3 5

)
= (1 4 3 2)

2.1.3 Representing Permutations on a Computer

When thinking about how to most efficiently represent permutations in a computer program we
have to consider which operations we want to perform on them. The most important ones are the
following:

• Evaluate g(x) for any x ∈ Ω (1)

• Obtain the composition gh of g and h (2)

• Obtain the inverse g−1 of g (3)

Intuitively, if Ω = Ωn we can represent a permutation g by using an array arr of n unsigned
integer entries such that (assuming one-based-indicing) ∀x ∈ Ω : g(x) = y ⇔ arr[x] = y. This
representation allows (1) to be evaluated in O(1) time, and (2), (3) to be obtained in O(n) time.

Another possibility is representing g as a permutation word, i.e. several permutations g1, g2, . . . , gm,
each of which is in turn represented by an array as above, such that g = g1g2 · · · gm. With this
representation, evaluating (1) takes O(m) time and obtaining (3) takes O(mn) time. However,
obtaining (2) is now possible in O(1) time because composing two permutation words simply re-
quires concatenating their respective representations. This representation can thus be beneficial
in contexts where permutations are evaluated infrequently but composed frequently2. To prevent
permutation words from growing too large they can be nomalized when appropriate, i.e. their
representation can be collapsed into a single array in O(mn) time.

2mpsym does not make use of permutation words since preliminary experiments found that using them were most
appropriate did not result in a notable performance increase.
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2.2 Permutation Groups

2.2.1 Motivation

We have seen in Section 2.1.1 how we can use permutations to describe graph automorphisms
which capture symmetries inherent in graphs. An obvious question now is how we can determine
and describe the set of all such symmetries for a given graph. A first step in this direction is the
observation that both “composition” and “inversion” of symmetries again result in symmetries.

Thinking back to Example 2.3, we interpreted the presented automorphism as a 90° right rotation
about the center of a square. Let us refer to this automorphism as autom1. Another automorphism,
autom2 of G which exchanges vertices 2 and 4 corresponds to a reflection across the squares upper
left to lower right diagonal. Notice that we can apply autom1 and autom2 in arbitrary order over
and over again without ever producing a graph that is not identical to G. The same is true when
also considering the inverse of autom1, i.e. a 90° left rotation (autom2 is its own inverse).

We can generalize this observation and state that given any two automorphisms of some undi-
rected graph G represented as permutations g and h, the combination gh as well as the inverses
g−1 and h−1 also represent automorphisms of G. This implies that the set of all automorphisms of
G is closed under composition and inversion which leads directly to the concept of a permutation
group.

2.2.2 Definition

Definition 2.7: Group

A (finite) group is a tuple (G, ◦) where G is a set and ◦ : G×G→ G is a binary operator.
Instead of (G, ◦) we usually just write G if the context is clear and instead of ◦((g1, g2)) we
write g1 ◦ g2 or simply g1g2. We denote the order of a group, i.e. the number of elements it
contains by |G|. Any group must satisfy the following criteria:

• ∀g1, g2 ∈ G : g1g2 ∈ G (closedness under ◦)

• ∀g1, g2, g3 ∈ G : g1(g2g3) = (g1g2)g3 (associativity of ◦)

• ∃e ∈ G : ∀g ∈ G : eg = ge = g (existence of identity)

• ∀g ∈ G : ∃g−1 ∈ G : gg−1 = g−1g = e (existence of inverse)

From Definition 2.7 it can easily be derived that the identity element e and the inverse of any g ∈ G
must be unique. Any group of order one must necessarily only contain this identity element. We
call such a group trivial and denote it by 1.

Example 2.6: Group

The set of all permutations on a set Ω, denoted Sym(Ω) (if Ω = Ωn we also write Sn),
together with the composition of permutations forms a group as can be easily verified.

An important related concept is that of subgroups:

11



Definition 2.8: Subgroup

If H ⊆ G and (H, ◦|H) is a group (where ◦|H is ◦ restricted to the elements of H), we say
that H is a subgroup of G. We also write H ≤ G.

We call any G ≤ Sym(Ω) a permutation group and say that G acts on Ω.

Example 2.7: Subgroup

The set {(), (1 2 3), (1 3 2)} together with the usual permutation composition operator
forms a subgroup of S3. More specifically, this group is the cyclic group of degree three, also
denoted C3.

We can characterise groups in general and permutation groups in particular via a generating set :

Definition 2.9: Generating Set

Let (G, ◦) be a group and S ⊆ G, then 〈S〉 is the intersection of all subgroups of (G, ◦) that
contain S. If 〈S〉 = H we say that S generates H.

Intuitively this means that every element of 〈S〉 can be obtained by composing (possibly inverted)
elements of S via the ◦ operator. Groups can have many different generating sets and some gen-
erating sets may be redundant, i.e. removing an element from the generating set does not change
the generated group. Very large groups can often be represented by comparatively small generating
sets.

Example 2.8: Generating Set

Sn = 〈{(1 2), (1 2 . . . n)}〉 with |Sn| = n!.

Another method of characterising groups are presentations which generalize generating sets. Infor-
mally, a presentation 〈S | R〉 consists of a set of generators S and a set of relations R.

Example 2.9: Presentation

Sn = 〈{i i+1) | 1 ≤ i < n}〉.

As we shall see, both these representations, while often convenient for constructing mathematical
proofs are not well suited to represent permutation groups in a computer program.

2.2.3 Orbits

A concept related to permutation groups that will be essential when formalizing the TMOR problem
in Chapter 5 is that of permutation group orbits:

12



Definition 2.10: Permutation Group Orbit

Given a permutation group G acting on a set Ω, the permutation group orbit xG of some
x ∈ Ω is the set {g(x) | g ∈ G}.

Example 2.10: Permutation Group Orbit

Consider the permutation group G = 〈{(1 2), (2 3), (4 5)}〉 acting on Ω5, then we have:

1G = 2G = 3G = {1, 2, 3}
4G = 5G = {4, 5}

It follows directly from Definition 2.10 and the fact that every g ∈ G has an inverse that:

Lemma 2.1: Disjointness of Permutation Group Orbits

For two x1, x2 ∈ Ω, xG1 and xG1 are either identical or disjoint.

Based on this, we can formulate the following equivalence relation:

Definition 2.11: ∼G

Let ∼G⊆ Ω × Ω with (x1, x2) ∈∼G⇔ xG1 = xG2 . Instead of (x1, x2) ∈∼G we write x1 ∼G
x2. For each x ∈ Ω we denote the equivalence class of x by [x]∼G

and note that the
equivalence classes partition Ω into the quotient set Ω /∼G = {[x]∼G

| x ∈ Ω}. Given some
(usually obvious) total strict order < on Ω we can define a canonical representative for every
equivalence class as repr([x]∼G

) = min<([x]∼G
).

Example 2.11: ∼G

Let G be as in Example 2.10. Then we have:

[1] = [2] = [3] = {1, 2, 3}, repr({1, 2, 3}) = 1

[4] = [5] = {4, 5}, repr({4, 5}) = 4

And Ω = {1, 2, 3} t {4, 5}.

It is interesting to ask how many such equivalence classes exist for a given G acting on Ω. An
answer is provided by the following lemma, proved e.g. in [15] Chapter 2:

13



Lemma 2.2: Cauchy-Frobenius Lemma

For all g ∈ G, let Ωg = {x ∈ Ω | g(x) = x}, then it holds that |Ω /∼G | = 1
|G|
∑
g∈G |Ωg|, i.e.

the number of equivalence classes of ∼G is the average number of elements of Ω stabilized
by the elements of G.

Example 2.12: Cauchy-Frobenius Lemma

Let G be as in Example 2.10. As can be readily verified |G| = 12. We can explicitly
determine |Ωg| for all g ∈ G:

|Ω()| = |{1, 2, 3, 4, 5}| = 5

|Ω(1,2)| = |{3, 4, 5}| = 3

|Ω(1,2)(4,5)| = |{3}| = 1

|Ω(1,2,3)| = |{4, 5}| = 2

|Ω(1,2,3)(4,5)| = |∅| = 0

|Ω(1,3)| = |{2, 4, 5}| = 3

|Ω(1,3)(4,5)| = |{2}| = 1

|Ω(1,3,2)| = |{4, 5}| = 2

|Ω(1,3,2)(4,5)| = |∅| = 0

|Ω(2,3)| = |{1, 4, 5}| = 3

|Ω(2,3)(4,5)| = |{1}| = 1

|Ω(4,5)| = |{1, 2, 3}| = 3

Averaging these set sizes we obtain 1
12 (5 + 3 + 1 + 2 + 0 + 3 + 1 + 2 + 0 + 3 + 1 + 3) = 2

which is, as expected, equal to the number of permutation group orbits we determined in
Example 2.10.

Another concept we will encounter again later is that of transitive permutation groups:

Definition 2.12: Transitive Permutation Group

If |Ω /∼G | = 1 we say that G is transitive.

Example 2.13: Transitive Permutation Group

The permutation group G = 〈{(1 2), (2 3), (3 4), (4 5)}〉 is transitive.

2.2.4 Direct and Wreath Product

To conclude our theoretical discussion of permutation groups we will now define two binary operators
that combine permutation groups, namely the direct product and the wreath product. We will need
these concepts in Section 4.3 where we use them to decompose the automorphism groups of certain
separable and hierarchical graphs.

We will first introduce the relatively straightforward direct product for the special case of per-
mutation groups acting on Ωn:
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Definition 2.13: Direct Product

Given two permutation groups G = 〈SG〉 and H = 〈SH〉 with G acting on Ωn1 and H acting
on Ωn2

, the direct product of G and H, denoted G ×H is a permutation group acting on
Ωn1+n2

such that G×H = 〈SG ∪ S′H〉 where S′H is SH “shifted upwards” such that it acts
on {n1 + 1, . . . , n1 + n2}.

The direct product is somewhat analogous to the cartesian product of sets. In particular, we have:

Lemma 2.3: Direct Product Order

Given two permutation groups G and H it holds that |G×H| = |G| · |H|.

Example 2.14: Direct Product

Given:

G = 〈{(1 2), (1 3), (2 3)}〉
H = 〈{(1 3), (2 4), (1 2)(3 4)}〉

acting on Ω3 and Ω4 respectively, we have:

G×H = 〈{(1 2), (1 3), (2 3), (4 6), (5 7), (4 5)(6 7)}〉

and:
|G×H| = |G| · |H| = 6 · 8 = 48

The wreath product is slightly more involved, instead of a formal definition we will try to give
an intuitive understanding of it by means of what we shall call undirected hypergraphs3. Given
a “proto” undirected graph Gproto = (Vproto, Eproto) and a “super” undirected graph Gsuper =
(Vsuper, Esuper) we construct such an undirected hypergraph by fully connecting |Vsuper| “instances”
of Gproto according to Esuper. More formally:

Definition 2.14: Hypergraph

Given two undirected graphs Gproto = (Vproto, Eproto) and Gsuper = (Vsuper, Esuper), we
define their undirected hypergraph Ghyper = (Vhyper, Ehyper) as follows:

Vhyper = {1, 2, . . . , |Vproto| · |Vsuper|}
Ehyper = {{i, j} | {p(i), p(j)} ∈ Eproto ∨ {s(i), s(j)} ∈ Esuper, i, j ∈ Vhyper}

3Note that the definition we give here deviates slightly from what is commonly understood by the term.
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where:

p : Vhyper → Vproto, p(i) = ((i− 1) mod |Vproto|) + 1

s : Vhyper → Vsuper, s(i) =

⌊
i− 1

|Vproto|

⌋
+ 1

It can be shown that the wreath product the automorphism groups of Gproto and Gsuper, denoted
Gproto o Gsuper, is a subgroup of, and often identical to, the automorphism group of Ghyper. The
conditions under which identity holds are known but highly technical, refer to [9]. We will for
now always assume identity, at the risk of “missing out on” a number of automorphisms when
decomposing automorphism groups into wreath products in Section 4.3.

Example 2.15: Wreath Product

Given two undirected graphs which have automorphism groups G and H from Example 2.14
respectively, their undirected hypergraph has automorphism group G oH with:

G oH = 〈{(1 2), (1 3), (2 3), (4 10)(5 11)(6 12),

(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)}〉

and:
|G oH| = |G|4 · |H| = 64 · 8 = 10368

As with the direct product, we can easily determine |G oH| from |G| and |H|:

Theorem 2.1: Wreath Product Order

Let G and H be permutation groups acting on Ωn1
and Ωn2

respectively and assume that
H does not stabilize n2, then it holds that |G oH| = |G|n2 · |H|.

2.2.5 Representing Permutation Groups on a Computer

While a generating set completely defines a permutation group, it is not a suitable representation
when considering which common operations we would like to be able to efficiently perform on
permutation groups. In particular, several algorithms we will encounter in later chapters will
require us to be able to do the following given a permutation group G acting on a set Ω:

• Iterate over all g ∈ G (1)

• Test whether g ∈ G for any g ∈ Sym(Ω) (2)

In principle, a generating set allows for both of these operations. From the definition of a generating
set it directly follows that every element of a permutation group G can be obtained via the simple
fixed point Algorithm 2.1. However, this algorithm is inefficient in two ways: For one it requires us
to somehow store every element of G (or a hash thereof) since otherwise we would have no way of
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Algorithm 2.1 Naive group enumeration.

1: procedure ENUMERATE GROUP NAIVE(G = 〈S〉)
2: S′ ← S ∪ {s−1 | s ∈ S}
3:

4: elements← {}
5:

6: while elements is changing do
7: for g ∈ elements, h ∈ S′ do
8: elements← elements ∪ {gh}
9: end for

10: end while
11:

12: return elements
13: end procedure

knowing if a newly generated element has already been generated previously. Additionally, some
elements of G may be generated multiple times. We can then perform membership testing for some
permutation h by comparing h to every g ∈ G.

Ideally we would like to use an alternative permutation group representation that allows us to
uniquely enumerate all group elements in a deterministic order without the need to store all of them
and to perform membership testing with time and space complexity independent of |G|. Luckily,
such a representation does indeed exist and takes the form of a base and strong generating set (short
BSGS ). The rest of this section defines what a BSGS is and how we can utilize it for efficient group
enumeration and membership testing. It is based on the information presented in [10] Chapter 4.
Constructing a BSGS from a given generating set is such an important topic that we will discuss it
separately in Chapter 3.

We begin with a preliminary definition:

Definition 2.15: Stabilizer Subgroup

Given a permutation group G acting on a set Ω and a sequence X = (x1, x2, . . . , xk), xi ∈
Ω, ∀1 ≤ i ≤ k the stabilizer subgroup Gx1,x2,...,xk

≤ G is the largest subgroup of G whose
elements stabilize every element of X, i.e. ∀g ∈ Gx1,x2,...,xk

: Xg = X.

We can now define:

Definition 2.16: BSGS

A BSGS for a permutation group G acting on a set Ω is a tuple (B,S). The base B is a
sequence B = (β1, β2, . . . , βk), βi ∈ Ω,∀1 ≤ i ≤ k which is not stabilized by any element
of G, i.e. ∀g ∈ G, g 6= 1 : ∃β ∈ B : g(β) 6= β. The strong generating set S is a set
of permutations that generates G (i.e. G = 〈S〉) and additionally contains generators for
every basic stabilizer G(i) = Gβ1,β2,...,βi−1

, ∀1 ≤ i ≤ k + 1. We introduce the notation

S(i) = S ∩ G(i) and it must hold that G(i) =
〈
S(i)

〉
. It is easy to see that for the basic
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stabilizers it holds that 1 = G(k+1) ≤ G(k) ≤ · · · ≤ G(1) = G.

Example 2.16: BSGS

Let G = S5, then one possible BSGS of G is:

B = (1, 2, 3, 4)

S = {(4 5), (3 5), (2 5), (1 5)}

and we have:

S(1) = S

S(2) = {(4 5), (3 5), (2 5)}
S(3) = {(4 5), (3 5)}
S(4) = {(4 5)}
S(5) = {}

G(1) = G

G(2) = 〈S(2)〉 = G1

G(3) = 〈S(3)〉 = G1,2

G(4) = 〈S(4)〉 = G1,2,3

G(5) = 1 = G1,2,3,4

Note that while every permutation group can be represented by a BSGS, a permutation groups
BSGS is not unique4.

To make full use of the BSGS representation, we additionally have to augment (B,S) with the
following data structures:

Definition 2.17: Basic Orbits and Transversals

Given a BSGS (B,S) with B = (β1, β2, . . . , βk), for every 1 ≤ i ≤ k we define an associated

basic orbit ∆(i) = βG
(i)

i and a transversal U (i) = {u(i)
x ∈ G | x ∈ ∆(i)} where u

(i)
x is

some permutation such that u
(i)
x (βi) = x. We further define ∆ = (∆1,∆2, . . . ,∆k) and

U = (U (1), U (2), . . . , U (k)). From now on we write (B,S,∆, U) to explicitly denote a BSGS
plus associated basic orbits and transversals.

Assuming that we can efficiently obtain B, S, ∆ and U for some group G, the following theorem
provides us with the means to efficiently enumerate G:

Theorem 2.2: Transversal Normal Form

Given a BSGS (B,S,∆, U) for a permutation group G with a base of size k, every g ∈ G
has a unique representation of the form g = ukuk−1 . . . u1, ui ∈ U (i),∀1 ≤ i ≤ k.

4Except for the trivial permutation group 1.
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Thus we can systematically enumerateG by composing all combinations of elements from U (k), . . . , U (1).
We can then also easily calculate |G| = |U (k)| · |U (k−1)| · · · · · |U (1)|.

Example 2.17: Transversal Normal Form

Let G = A4, the alternating group of degree four, also denoted A4. One possible BSGS for
A4 is (B = (1, 2), S = {(2 3 4), (1 3 4)}) such that the basic stabilizers, basic orbits and
transversals are as follows:

S(1) = S

S(2) = {(2 3 4)}

∆(1) = 1S = {1, 2, 3, 4}

∆(2) = 2{(2 3 4)} = {2, 3, 4}

U(1) = {(), (1 2 4), (1 3 4), (1 4 3)}

U(2) = {(), (2 3 4), (2 4 3)}

It is well known that |An| = n!/2, so in this case we should have |G| = |A4| = 4!/2 = 12 and
indeed we find that |U (2)| · |U (1)| = 3 · 4 = 12. Iterating over all combinations of elements
u2 ∈ U (2), u1 ∈ U (1) we can obtain all elements of G:

u2,1u1,1 = ()() = ()

u2,1u1,2 = ()(1 2 4) = (1 2 4)

u2,1u1,3 = ()(1 3 4) = (1 3 4)

u2,1u1,4 = ()(1 4 3) = (1 4 3)

u2,2u1,1 = (2 3 4)() = (2 3 4)

u2,2u1,2 = (2 3 4)(1 2 4) = (1 2 3)

u2,2u1,3 = (2 3 4)(1 3 4) = (1 3)(2 4)

u2,2u1,4 = (2 3 4)(1 4 3) = (1 4 2)

u2,3u1,1 = (2 4 3)() = (2 4 3)

u2,3u1,2 = (2 4 3)(1 2 4) = (1 2)(3 4)

u2,3u1,3 = (2 4 3)(1 3 4) = (1 3 2)

u2,3u1,4 = (2 4 3)(1 4 3) = (1 4)(2 3)

Algorithm 2.2 Test permutation group membership.

1: procedure IS MEMBER(g, (B,S,∆, U))
2: g′ ← g
3:

4: for i = 1, 2, . . . , k do
5: if g′(βi) /∈ ∆(i) then
6: return false
7: end if
8:

9: Find ui ∈ U (i) such that ui(βi) = g′(βi)
10:

11: g′ ← g′u−1
i

12: end for
13:

14: if g′ = 1 then
15: return true
16: else
17: return false
18: end if
19: end procedure

Furthermore we can perform membership testing via Algorithm 2.2. The idea behind this
algorithm is simple: since by Theorem 2.2 any g ∈ G can be decomposed as g = ukuk−1 . . . u1
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we can attempt to “reduce” g to 1 by composing g (step by step) with u−1
1 , u−1

2 , . . . , u−1
k so that

we end up with g′ = uk · · ·u1u
−1
1 · · ·u

−1
k = 1. Determining the necessary u−1

i is easy because all

u
(i)
x ∈ U (i) stabilize base elements β1, β2, . . . , βi−1 as should be obvious from the definition of U (i).

Thus, when have reduced g to g′ = ukuk−1 · · ·ui we know that ui(βi) = g′(βi) and thus we have

ui = u
(i)
g′(βi)

. Since any ukuk−1 · · ·u1 produces an element of G, we can be sure that we can reduce

g′ to 1 iff g ∈ G. For g /∈ G Algorithm 2.2 either terminates before we reach this point because
encounter a g′ for which g′(βi) /∈ ∆(i) so that we can not find an appropriate ui or the final g′ is
not the identiy permutation.

Example 2.18: Test Permutation Group Membership

Once again, let G = A4 with the same BSGS as in Example 2.17. We will use Algorithm 2.2
to verify that (1 2)(3 4) ∈ G:

i βi g′(βi) ui g′

0 - - - (1 2)(3 4)
1 1 2 (1 2 4) (1 2)(3 4) · (1 4 2) = (2 4 3)
2 2 4 (2 4 3) (2 4 3) · (2 3 4) = 1

For a negative example consider the permutation (1 2 3 4) /∈ G:

i βi g′(βi) ui g′

0 - - - (1 2 3 4)
1 1 2 (1 2 4) (1 2 3 4) · (1 4 2) = (2 3)
2 2 3 (2 3 4) (2 3) · (2 4 3) 6= 1

2.3 Partial Permutations

2.3.1 Motivation

We have seen in Section 2.1 how we can represent symmetries of graphs via graph automorphisms
described by permutations. But remember that in Section 1.3 we hinted at the fact that we are
interested not only in symmetries but also in partial symmetries of graphs. In this section we
will show how to represent these partial symmetries via partial graph automorphisms described by
partial permutations. We begin with a preliminary definition:

Definition 2.18: Vertex-Induced Subgraph

Given an undirected graph G = (V,E), a vertex-induced subgraph of G is another undirected
graph Gsub = (Vsub, Esub) such that Vsub ⊆ V and Esub = {{i, j} | {i, j} ∈ E, i, j ∈ Vsub}.
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Example 2.19: Vertex-Induced Subgraph

Consider again the undirected graph G from Example 2.1. The graph Gsub = (Vsub, Esub),
visualized in Figure 2.4, with Vsub = {1, 2, 3} and Esub = {{1, 2}, {2, 3}} is a vertex-induced
subgraph of G.

1 2

3

Figure 2.4: Gsub

With this definition out of the way we can now define:

Definition 2.19: Partial Graph Automorphism

Given an undirected graph G, a partial automorphism of G is an isomorphism from one
vertex-induced subgraph of G to another.

Example 2.20: Partial Graph Automorphism

Consider the undirected graph G presented in Figure 2.5. The function pautom : {1, 4, 7} →
{2, 5, 8} with:

pautom(1) = 2, pautom(4) = 5, pautom(7) = 8,

is a partial automorphism of G because it is an isomorphism from the vertex-induced sub-
graph Gsub,1 = ({1, 4, 7}, . . . ) to the vertex-induced subgraph Gsub,2 = ({2, 5, 8}, . . . ).

1 2 3

4 5 6

7 8 9

Figure 2.5: G

Note that every automorphism of an undirected graph G is also a partial automorphism of G but
the converse does not necessarily hold so that conceptually, partial graph automorphisms generalize
graph automorphisms. Thus it seems natural that we can describe them by generalized permuta-
tions. These are exactly the partial permutations this section is concerned with.
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2.3.2 Definition

Definition 2.20: Partial Permutation

A partial permutation is a bijection not necessarily from a set Ω to itself but from some
domain DomΩ ⊆ Ω to an image ImΩ ⊆ Ω.

We can view ordinary permutations as special partial permutations for which DomΩ = ImΩ = Ω.
We will denote partial permutations with the letters s and t and write dom(s) and im(s) to

denote the domain and image of some partial permutation s. Similar to ordinary permutations we
can notate partial permutations in two-line notation or chain/cycle notation. The former should be
self explanatory, the latter needs to account for the fact that not every element of DomΩ needs to
map back to DomΩ. For a partial permutation s, we call a sequence of elements of dom(s) resulting
from repeated application of s which is terminated by some element of im(s) a chain and use square
brackets to differentiate it from a cycle.

Example 2.21: Partial Permutation

Let Ω = Ω5 and s : {1, 2, 3, 5} → {1, 2, 4, 5} such that:

s(1) = 2, s(2) = 1, s(3) = 4, s(5) = 5

Then we can write s as:

s =

(
1 2 3 4 5
2 1 4 − 5

)
or:

s = (1 2)[3 4](5)

Note that we did not omit the cycle of length one in chain/cycle notation to signify that
5 ∈ dom(s).

Because we will need it frequently, we also define the application of a partial permutation on a set:

Definition 2.21: Partial Permutation Set Application

Given a partial permutation s and a set X, we define s(X) = {s(x) | x ∈ X ∩ dom(s)}.

As with ordinary permutations, we can define the composition of two partial permutations and the
inverse of a partial permutation:

Definition 2.22: Partial Permutation Composition

The composition of two partial permutations s and t is another partial permutation st :
s−1((im(s) ∩ dom(t)))→ t((im(s) ∩ dom(t))) such that ∀x ∈ dom(st) : st(x) = s(t(x)).
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Definition 2.23: Partial Permutation Inverse

The inverse of a partial permutation s is another partial permutation s−1 : im(s)→ dom(s)
such that s = ss−1s and s−1 = s−1ss−1. It also holds that ss−1 = 1dom(s) and s−1s = 1im(s)

where 1X : X → X is the identity partial permutation on X, i.e. ∀x ∈ X : 1X(x) = x.

Note the difference between this and Definition 2.6.
As with ordinary permutations, composition is associative but not commutative. Note that

for any partial permutation s it holds that 1dom(s)s = s1im(s) = s. If im(s) ∩ dom(t) = ∅ the
resulting partial permutation is the empty partial permutation 0 : ∅ → ∅ such that for any partial
permutation s it holds that s0 = 0s = 0.

2.3.3 Representing Partial Permutations on a Computer

To represent a partial permutation s in a computer program, we use an array arr of max(dom(s))
unsigned integer entries such that (assuming one-based indexing) ∀x ∈ dom(s) : s(x) = y ⇔
arr[x] = y ∧ ∀x /∈ dom(s), 1 ≤ x ≤ max(dom(s)) : arr[x] = 0.

This representation allows us to evaluate s(x) in O(1) time. Because we store no information
about Ω, we simply let this operation return 0 not only for ∀x /∈ dom(s), 1 ≤ x ≤ max(dom(s)) but
also for any other x ∈ N+. Obtaining the inverse of s as well as composing s with another partial
permutation t is trivially possible in O(max(dom(s)) time.

We can optionally utilize two separate (sorted) sets to store dom(s) and im(s) so that these do
not have to be constructed from arr when they are required but we have to take care to preserve
the correctness of these sets when composing or inverting partial permutations.

2.4 Partial Permutation Inverse Monoids

Similar to how we can represent all symmetries of a graph via permutation groups, we can represent
all partial symmetries of a graph via a set of partial permutations closed under composition and in-
version. However, these sets do not, in general, form groups but rather inverse semigroups/monoids
which share some of the properties of groups.

2.4.1 Definition

Given such a set S together with the composition of partial permutations ◦, the reason that (S, ◦)
does not necessarily form a group is simple: S does not have to contain a unique identity element.
Given some s ∈ S we have that els = ser = s for any el ⊇ dom(s), er ⊇ im(s). However, (S, ◦) is
guaranteed to form a semigroup, an algebraic structure generalizing the group concept:

Definition 2.24: Semigroup

A (finite) semigroup is as a tuple (S, ◦) where S is a set and ◦ : S × S → S is a binary
operator. A semigroup must satisfy only closedness under and associativity of ◦ as given in
Definition 2.7.

We can add a further restriction to this definition by noting that:
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Lemma 2.4: Uniqueness of Inverse

Let S be a set of partial permutations closed under composition and inversion, then it holds
that ∀s ∈ S : ∃!s−1 ∈ S : s = ss−1s ∧ s−1 = s−1ss−1.

Proof. Because S is closed under inversion, existence of s−1 is trivially given and we only need
to prove that s−1 is unique. Given some s ∈ S, assume that there are s−1

1 , s−1
2 ∈ S such that

s = ss−1
1 s, s−1

1 = s−1
1 ss−1

1 and s = ss−1
2 s, s−1

2 = s−1
2 ss−1

2 . Then we have s−1
1 = s−1

1 1dom(s) =

s−1
1 ss−1

2 = 1im(s)s
−1
2 = s−1

2 .

Motivated by this we introduce inverse semigroups:

Definition 2.25: Inverse Semigroup

A (finite) inverse semigroup is a tuple (S, ◦) where S is a set and ◦ : S × S → S is a binary
operator. It must hold that:

• (S, ◦) is a semigroup

• ∀s ∈ S : ∃s−1 ∈ S : s = ss−1s, s−1 = s−1ss−1 (existence of inverse)

Accordingly, (S, ◦) forms what we will refer to as a partial permutation inverse semigroup5. We
say that (S, ◦) acts on Ω =

⋃
s∈S dom(s) and if S additionally contains the element 1Ω we say that

(S, ◦) is an partial permutation inverse monoid. The difference between inverse semigroups and
inverse monoids is minor but for technical reasons we will from here on only work with the latter.

It is easy to see that every inverse monoid is a semigroup and that every group is an inverse
monoid. Figure 2.6 depicts this generalization relationship graphically.

2.4.2 Representing Partial Permutation Inverse Monoids on a Computer

We now present a method of efficiently representing partial permutation inverse monoids in a
computer program. This representation can be constructed from a generating set of partial per-
mutations (defined analogously to definition 2.9) and used to perform membership testing and, to
some extent, inverse monoid enumeration. Its theoretical underpinnings are more involved than for
the relatively straightforward BSGS. For proof of the theoretical soundness of what is presented
here refer to [5] which this section is based on.

The central data structure we will make use of is the so called orbit graph:

5There exist other semigroups than those made up of partial permutations but we will only focus on these
particular ones in this thesis.
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Semigroups

Inverse Monoids

Groups

Figure 2.6: Generalization relationship between groups, inverse monoids and semigroups.

Definition 2.26: Orbit Graph

An orbit graph OG of a partial permutation inverse monoid M = 〈S〉 acting on a set Ω is a
directed graph (V,E,L). Let S′ = S ∪ {s−1 | s ∈ S}, then:

• V = {α1 = Ω, α2 ⊆ Ω, . . . , αn ⊆ Ω} i.e. the nodes of OG are labelled with subsets of
Ω one of which, namely α1 which we call the root of OG, is equal to Ω.

• E : {(αi, αj) | ∃s ∈ S′ : s(αi) = αj}a

• L : E →M where (αi, αj) 7→ s ∈ S′ =⇒ s(αi) = αj .

aNote that E is a multiset.

Obtaining an orbit graph given a generating set S is straightforward: We simply start out with
the root α1 and “explore” the rest of OG in breadth-first fashion, finding new nodes by taking the
image of existing ones under the elements of S′ as detailed by Algorithm 2.3.

Example 2.22: Orbit Graph

Consider the partial permutation inverse monoid M acting on Ω = {1, 2, 3} generated by
S = 〈{s1 = (1 2), s2 = [1 2 3], s3 = [3 2 1]}〉 (so that S′ = S). Figure 2.7 shows the orbit
graph for M obtained via Algorithm 2.3. For clarity, all edges to α7 = ∅ except one are
omitted.
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α1

α2 α3

α4 α5

α6 α7

s1, s3 s2

s3 s1 s2

s1, s2

s2

s3

s1, s2

s1, s3 s3

s2

s1

α1 = {1, 2, 3}
α2 = {1, 2}
α3 = {2, 3}
α4 = {1}
α5 = {3}
α6 = {2}
α7 = ∅

Figure 2.7: Orbit graph and spanning tree for M .

To perform membership testing we also require a spanning tree for and the strongly connected
components (s.c.c.s) of OG.

The spanning tree is a tree whose root is the root of OG and whose nodes are all the nodes of
OG. We can construct this tree simply by choosing its edges to be those edges of the orbit graph
over which we first “discover” new nodes during the construction of OG.

Example 2.23: Orbit Graph Spanning Tree

A spanning tree (in general there may be several equally valid spanning trees to choose from)
for the orbit graph presented in Example 2.22 is indicated by the red edges in Figure 2.7.

Informally, the s.c.c.s of OG are the “coarsest” possible partition of V into sets of vertices for which
every vertex is reachable from every other vertex in the set. Finding the s.c.c.s of a directed graph
is possible in O(|V |+ |E|) time e.g. via Tarjan’s Algorithm [20].

Example 2.24: Orbit Graph Strongly Connected Components

The s.c.c.s for the orbit graph presented in Example 2.22 are
{{α1}, {α2, α3}, {α4, α5, α6}, {α7}}.

Given an orbit graph OG for a partial permutation inverse monoid M as well as a spanning tree
and the s.c.c.s of OG, we can conclusively determine whether s ∈M for any partial permutation s
as follows:

Firstly, it is trivial to see that im(s) /∈ V =⇒ s /∈ M : Because any s ∈ M = 〈S〉 can be
obtained by composing elements of S′, there must a “path” t1 → t2 → · · · → tn, ti ∈ S′, ∀1 ≤ i ≤ n
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Algorithm 2.3 Construct orbit graph.

1: procedure CONSTRUCT ORBIT GRAPH(M = 〈S〉)
. M acts on a set Ω.

2:

3: S′ ← S ∪ {s−1 | s ∈ S}
4:

5: V ← {α1 = Ω}
6: E ← {}
7:

8: Q← {α1}
9: D ← {}

10:

11: while Q 6= ∅ do
12: Choose an arbitrary α ∈ Q
13:

14: for s ∈ S′ do
15: α′ = s(α)
16:

17: E ← E ∪ {(α, α′)}
18: L((α, α′)) = s
19:

20: if α′ /∈ D then
21: Q← Q ∪ {α′}
22: end if
23: end for
24:

25: Q← Q \ {α}
26: D ← D ∪ {α}
27: end while
28:

29: return OG = (V,E,L)
30: end procedure
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Figure 2.8: Intuition behind s ∈M ⇐⇒ r−1stsr ∈Mαr
.

through OG such that s = t1t2 · · · tn. This implies that im(s) = im(t2t2 · · · tn) ∈ V . Because
s ∈M =⇒ s−1 ∈M , we also have dom(s) = im(s−1) /∈ V =⇒ s /∈M .

Unfortunately, it is possible that dom(s), im(s) ∈ V and we still have s /∈M . To check whether
this is the case we first have to introduce additional algebraic structures related to the s.c.c.s of
OG. Refer to Figure 2.8 throughout the following explanation.

Firstly, for every s.c.c. C of OG we choose an arbitrary αr ∈ C to be the representative of
C. Now we let Mαr

be the inverse submonoid (defined analogously to Definition 2.8) of M which
contains only partial permutations t = r−1 · · · with dom(t) = im(t) = αr where r is the partial
permutation obtained by composing all t ∈ S′ along our spanning tree of OG from α1 to αr.

We can obtain a generating set for Mαr
as follows: Let tij ∈ M be such that t(αi) = αj . For

any two αi, αj ∈ C it is easy to see that r−1tritijtjr ∈ Mαr . In fact, all elements of Mαr must
correspond to r−1 composed with circular paths through C starting and ending at αr. Intuitively,
we should thus have Mαr

= 〈{r−1tritijtjr | αi, αj ∈ C}〉.
We can use Mαr

to test whether s ∈M as follows: Let αs = im(s) and αr be the representative
of the s.c.c. in which αs lies. Then t = r−1stsr is a partial permutation with dom(t) = im(t) = αr.

For all such t we have t ∈ M ⇐⇒ t ∈ Mαr . At first this does not seem to help us greatly
because Mαr is also a partial permutation inverse monoid and testing membership in such is what
we’re trying to accomplish in the first place. We can solve this chicken and egg problem by realising
that since ∀t ∈ Mαr

: dom(t) = im(t), Mαr
is isomorphic to a permutation group so we can check

whether t ∈Mαr
via Algorithm 2.2. We also have s ∈M ⇐⇒ t ∈M because t ∈M iff s actually

corresponds to a path through OG. Thus s ∈M ⇐⇒ t ∈Mαr
.

Algorithm 2.4 summarizes the above. Note that we have to find generators and construct BSGSs
for all Mαr only once after OG has been constructed. Proving that this algorithm actually returns
true iff s ∈M is non-trivial, refer to [5].
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Algorithm 2.4 Test partial permutation inverse monoid membership.

1: procedure IS MEMBER(s,OG = (V,E, L))
. OG is an orbit graph for some partial permutation inverse monoid M = 〈S〉.

2:

3: if dom(s) /∈ V ∨ im(s) /∈ V then
4: return false
5: end if
6:

7: C ← the s.c.c. such that im(s) ∈ C
8: αr ← the representative of C
9: r ← the composition of all t ∈ S′ along the spanning tree of OG from α1 to αr

10: Mαr
← the inverse submonoid of M with ∀t = r−1 · · · ∈Mαr

: dom(t) = im(t) = αr
11:

12: if r−1stsr ∈Mαr
then

13: return true
14: else
15: return false
16: end if
17: end procedure

Example 2.25: Test Partial Permutation Inverse Monoid Membership

Let M and OG be as in Example 2.22 and let α1, α2, α4, α7 be the representatives of their
respective s.c.c.s. We will use Algorithm 2.4 to verify that s = (2 3) ∈M . We have dom(s) =
im(s) = {2, 3} = α3 such that αr = α2, r = (1 2), and Mαr = Mα2 = 〈{(1 2)}〉. And it is
r−1st−1

32 = (1 2)(2 3)[1 2 3] = 0 ∈ Mα2
. For a negative example consider s = (1)[3 2] /∈ M

which is obviously true because dom(s) = {1, 3} /∈ V .

We can also use OG to determine |M |: It is easy to see that for any s ∈M , dom(s) and im(s) must
lie in the same s.c.c. of OG. It also holds that:

Lemma 2.5:

Let M be a partial permutation inverse monoid, OG an orbit graph for M and C an s.c.c. of
OG with representative αr, then there are exactly |C|2 · |Mαr

| partial permutations s ∈ M
with dom(s), im(s) ∈ C. Notice that this implies that |Mαr

| is independent of our choice of
αr.

Proving this is non-trivial, refer to [5]. It immediately follows that:
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Corollary 2.1: Partial Permutation Inverse Monoid Order

Let M be a partial permutation inverse monoid, OG an orbit graph for M and C the set of
all s.c.c.s of OG. Furthermore, let αr,i be the representative of Ci ∈ C. Then it holds that:

|M | =
∑
Ci∈C

|Ci|2 · |Mαr,i |

Example 2.26: Partial Permutation Inverse Monoid Order

For M from Example 2.22 we have:

Mα1 = 〈{1}〉
Mα2 = 〈{(1 2)}〉
Mα4 = 〈{1}〉
Mα7 = 〈{1}〉

And thus |M | = (12 · 1) + (22 · 2) + (32 · 1) + (12 · 1) = 19.

In principle, we could use Lemma 2.5 to somewhat systematically (albeit not as efficiently as
we would ideally like) enumerate M by repeatedly applying the equivalent of Algorithm 2.1 for all
admissible domains until we have found the right number of partial permutations for each of them.
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Chapter 3

BSGS Construction

We will now discuss how to efficiently obtain a BSGS for any permutation groupG given a generating
set for G. This topic is vast and many variants of the algorithms presented here, utilizing different
optimizations and trade-offs, as well as additional BSGS construction algorithms like the Solvable
BSGS Algorithm have been published in the computational group theory literature. Refer to
e.g. [10], Chapter 4 and 6 for a deeper treatment.

As a preliminary matter, in Section 3.1 we will see how to construct the basic orbits ∆(i) and
transversals U (i) from βi and S(i). In Section 3.2 we will then present the first BSGS construc-
tion algorithm, the Deterministic Schreier-Sims Algorithm. Finally, in Section 3.3 we present an
alternative Monte Carlo BSGS construction algorithm, the Random Schreier-Sims Algorithm.

3.1 Representing Basic Orbits and Transversals

Since basic orbits are simply unordered sets of elements of Ω, we can represent them using hash
tables and then perform orbit membership tests in O(1) time (on average). We can obtain ∆(i)

from βi and S(i) via Algorithm 3.5 which is a simple fixed-point algorithm.

Algorithm 3.5 Determine basic orbit.

1: procedure BASIC ORBIT(βi, S
(i))

2: ∆(i) ← {βi}
3:

4: while ∆(i) is changing do
5: for x ∈ ∆(i), g ∈ S(i) do
6: ∆(i) ← ∆(i) ∪ {g(x)}
7: end for
8: end while
9:

10: return ∆(i)

11: end procedure

While it is possible to similarly store all u
(i)
x ∈ U (i) explicitly, this can be impractical for groups
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of large degree because |U (i)| = |∆(i)| can be as large as |Ω|. A possible workaround is storing U (i)

as a tree structure from which we can reconstruct the u
(i)
x on demand. These tree structures are

commonly implemented as (Shallow) Schreier Vectors, refer to e.g. [10] Chapter 4.
Since for the purpose of this thesis we can assume that |Ω| = |Ωn| is of manageable size1, we will

not consider Schreier Vectors in detail and instead simply present Algorithm 3.6, a modified version
of Algorithm 3.5 that determines U (i) in addition to ∆(i). The necessary modifications should be
self-explanatory.

Algorithm 3.6 Determine basic orbit and transversal.

1: procedure BASIC ORBIT AND TRANSVERSAL(βi, S
(i))

2: ∆(i) ← {βi}
3: uβi

← 1
4:

5: while ∆(i) is changing do
6: for x ∈ ∆(i), g ∈ S(i) do
7: if g(x) /∈ ∆(i) then
8: ∆(i) ← ∆(i) ∪ {g(x)}
9: u

(i)
g(x) ← u

(i)
x g

10: end if
11: end for
12: end while
13:

14: U (i) ← {u(i)
x | x ∈ ∆(i)}

15:

16: return ∆(i), U (i)

17: end procedure

3.2 The Deterministic Schreier-Sims Algorithm

Let’s now turn our attention to a general deterministic algorithm which returns a BSGS for any
permutation group given a generating set for that group. This algorithm is commonly refered to as
the Schreier-Sims Algorithm. Here we will refer to it as the Deterministic Schreier-Sims Algorithm
to differentiate it from the Random Schreier-Sims Algorithm introduced in Section 3.3.

The Deterministic Schreier-Sims Algorithm makes use of Algorithm 3.7, a slightly modified
version of Algorithm 2.2 which returns both g′ and the loop index i. Importantly, since in every
iteration we “strip” ui from g′ by multiplying it with u−1

i , at the start of a given iteration i we
know that the returned g′ is of the form g′ = ukuk−1 · · ·ui and thus stabilizes β1, . . . , βi−1.

Algorithm 3.8 is a high-level description of the Deterministic Schreier-Sims Algorithm. It is
based on a simple observation: Referring back to Definition 2.16 it is easy to see that for a valid

1Because MPSoCs generally do not contain thousands of processing elements, let alone millions.
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Algorithm 3.7 Strip

1: procedure STRIP(g, (B,S,∆, U))
2: g′ ← g
3:

4: for i = 1, 2, . . . , k do
5: if g′(βi) /∈ ∆(i) then
6: return g, i
7: end if
8:

9: Find ui ∈ U (i) such that ui(βi) = g′(βi)
10:

11: g′ ← g′u−1
i

12: end for
13:

14: return g, k + 1
15: end procedure

BSGS with base of length k for some permutation group G it holds that G(k+1) = 1 and G
(i)
βi

=

G(i+1) because both G(i) and G(i+1) stabilize β1, β2, . . . , βi−1 and G(i+1) additionally stabilizes βi.
The Deterministic Schreier-Sims algorithm exploits this property as follows: We start by extend-

ing an initially empty base B until no g ∈ G stabilizes every β ∈ B, such that we have G(k+1) = 1
(line 3) and then initialize the basic stabilizer generating sets S(i) as well as the basic orbits ∆(i)

and transversals U (i) (lines 5–8).

We then assure that G
(i)
βi

= G(i+1) for i = k, k − 1, . . . , 1. It is easy to see that G(i+1) ≤ G
(i)
βi

always holds and so the problem reduces to assuring that G
(i)
βi
≤ G(i+1). Assuming for a moment

that we know a generating set for G
(i)
βi

, we can accomplish this by iterating over this generating

set and adjoining any generator g that is not already an element of G(i+1) to S(i+1). In fact, given
g′, j = STRIP(g) it suffices to adjoin g′ because we can represent g as g = g′uj−1 · · ·u1 where

uj−1, . . . , u1 are already elements of Uj−1, . . . , U1 (lines 14–18). Finding the generators of G
(i)
βi

is
possible by making use of Schreier’s Subgroup Lemma, refer to [10] Chapter 4.

This process is complicated by the fact that in a certain iteration i we need to adjoin g′ not only

to S(i+1) but to S(i+1), . . . , S(j) (lines 25–28) and then reset i to j because G
(j)
βj
≤ G(j+1) might

not hold anymore (lines 29–30). If j = k + 1 then g′ stabilizes all β ∈ B and thus we also need to
adjoin an additional base point not stabilized by g′ to B such that G(k+1) = 1 remains true (lines
20–23).

For a permutation group G acting on Ωn, the time complexity of the Deterministic Schreier-Sims
is polynomial in n. For an overview of the time complexity of several variants of this algorithm
refer to [2] Chapter 14.

3.3 The Random Schreier-Sims Algorithm

While the Deterministic Schreier-Sims Algorithm is guaranteed to terminate and produce a correct
BSGS for every possible generating set it can be slow in practice. With the Random Schreier-Sims
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Algorithm 3.8 The Deterministic Schreier-Sims Algorithm

1: procedure SCHREIER SIMS DETERMINISTIC(B,S)
. B initially is an empty base.
. S initially is any generating set for G.

2:

3: Append elements x ∈ Ω to B until no g ∈ G stabilizes B
4:

5: for 1 ≤ i ≤ k do
6: S(i) = S ∩Gβ1,β2,...,βi−1

7: ∆(i), U (i) = BASIC ORBIT AND TRANSVERSAL(βi, S
(i))

8: end for
9:

10: i← 1
11: while i ≥ 1 do
12: next :
13: for every generator g of G

(i)
βi

do
14: g′, j ← STRIP(g)
15:

16: if g′ = 1 then
17: continue
18: end if
19:

20: if j = k + 1 then
21: Append an x ∈ Ω with g′(x) 6= x to B
22: S(k) ← {}
23: end if
24:

25: for l = i+ 1, . . . , j do
26: S(l) ← S(l) ∪ {g′}
27: ∆(l), U (l) = BASIC ORBIT AND TRANSVERSAL(βl, S

(l))
28: end for
29:

30: i← j
31: goto next
32: end for
33:

34: i← i− 1
35: end while
36:

37: return (B,S,∆, U)
38: end procedure
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Algorithm there exists a very fast Monte Carlo algorithm with which we can potentially find a BSGS
quickly, even for groups of large degree, the drawback being that this BSGS is not guaranteed to
be valid.

Despite its name, the Random Schreier-Sims algorithm is not based on Schreier’s Subgroup
Lemma at all but rather on the following observations:

• It is possible to efficiently and uniformly sample elements from a permutation group without
the need to construct a BSGS first, refer to [10] Chapter 3.

• Given some g ∈ G, it can be shown that Algorithm 3.7 returns a permutation g′ = 1 with
probability < 1/2 if (B,S) is not a valid BSGS for G.

Thus, given a BSGS (B,S), if we randomly generate some g ∈ Gw ∈ N+ times and STRIP(g, (B,S))
returns the identity for all of them, we know that (B,S) is a BSGS for G with probability
p ≥ 1− 2−w.

The Random Schreier-Sims Algorithm starts by initializing a BSGS as in Algorithm 3.8 (lines
3–8). We then keep generating random g ∈ G and determine g′, j = STRIP(g, (B,S)). If g′ 6= 1 we
extend our BSGS as in Algorithm 3.8 (lines 20–28, with i always equal to 1). If g′ = 1 w consecutive
times, we stop. In certain cases we also know |G| ahead of time, e.g. when G is a wreath product,
such that we can keep extending the BSGS until |U (k)| · |U (k−1)| · · · |U (1)| = |G|.

For reasonably large w we can be very sure that the resulting BSGS is a valid BSGS for G. If
we want to be absolutely sure that this is the case we can:

• Run the Deterministic Schreier-Sims Algorithm on the resulting BSGS.

• Use the Todd-Coxeter-Schreier-Sims or the Sims “Verify” Algorithm to correct the resulting
BSGS. While this can be much faster for groups of large degree, these algorithms are beyond
the scope of this thesis, refer to [10] Chapter 6.

For a complete pseudocode description of the Random Schreier-Sims Algorithm refer to e.g. [10]
Chapter 4.
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Chapter 4

Architecture Graphs

We have previously seen in Sections 2.2 and 2.4 how permutation groups and partial permutation
inverse monoids can describe symmetries and partial symmetries of undirected graphs respectively.
This implies that we can capture the (partial) symmetries inherent in abstract MPSoC architectures
by first modelling them as undirected graphs and then determining the automorphism groups and
the partial automorphism inverse monoids of these graphs, which we shall term architecture graphs.

In this chapter we will first formally define architecture graphs in Section4.1. In Section4.2
we will then examine how we can determine a generating set for the automorphism group of an
architecture graph and in Section4.3 we demonstrate how we can decompose the automorphism
groups of certain separable and hierarchical architecture graphs into direct and wreath products
respectively. Finally, in Section4.4 we describe a simple but inefficient algorithm for finding a
generating set for the partial automorphism inverse monoid of an architecture graph.

4.1 Definition

Transforming abstract MPSoC architectures into undirected graphs is easy: We introduce a vertex
for every processing element and an edge for every communication channel. It should now be
apparent why we have only considered undirected graphs so far: MPSoC communication channels
are usually bi-directional1. In addition, we need to take into account the fact that processing
elements and communication channels might be heterogeneous. Thus we introduce vertex and edge
colors which assign identical processing elements and communication channels the same unique color
(where we simply represent colors by positive integers). More formally we define an architecture
graph as follows:

1But note that this need not be true in general, we can imagine e.g. one-directional FIFO channels between
processing elements or shared memory that can be read by multiple processing elements but only be written to by a
subset of them. Nevertheless we will continue assuming that all communication channels are bi-directional to keep
notation simple. The following discussion is trivially extensible to directed architecture graphs.
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Definition 4.1: Architecture Graph

An architecture graph A is a four-tuple (P,C, colP , colC) where:

• P is a set of vertex indices of the form {1, 2, . . . , n | n ∈ N+}.

• C = {{i, j} | i ≤ j∧ an edge exists between i and j, i, j ∈ P}a.

• colP : P → N+ maps every p ∈ P to some color.

• colC : C → N+ maps every c ∈ C to some color.

aNote that C is a multiset.

Example 4.1: Architecture Graph

Consider the abstract MPSoC architecture presented in Figure 4.1a. Take note of the fact
that unlike before we are now dealing with an MPSoC architecture with two types of pro-
cessing elements and communication channels respectively. The different processor types are
indicated by different shades of gray and the communication channels arise from L1 caches
shared between processing elements of the same type and an L2 cache shared by all process-
ing elements. If we omit any loops for the sake of simplicity, the corresponding architecture
graph can described as follows, see Figure 4.1b for a graphical representation:

• P = {1, 2, 3, 4}

• C = {{1, 2}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {3, 4}}

• colP (1) = 1, colP (2) = 1, colP (3) = 2, colP (4) = 2

• colC({1, 2}) = 1, colC({3, 4}) = 1, colC({1, 2}) = 2, colC({1, 3}) = 2,
colC({1, 4}) = 2, colC({2, 3}) = 2, colC({2, 4}) = 2, colC({3, 4}) = 2

(a)

1 2
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Figure 4.1: From abstract MPSoC architecture to automorphism graph.
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4.2 Determining Automorphisms

Finding a generating set for the automorphism group of a graph is a well-studied problem in graph
theory for which there exist efficient algorithms. The program nauty/Traces [12] is able to determine
such generating sets for vertex colored graphs. Since automorphism graphs can be totally colored
we furthermore need to be able to transform any totally colored graph into a vertex colored graph
with the same automorphism group, which is possible via the following theorem2:

Theorem 4.1: Reducing Totally Colored Architecture Graphs

Given a totally colored architecture graph A = (P,C, colP , colC) and letting

| colP | = the number of distinct vertex colors of A

| colC | = the number of distinct edge colors of A

we construct a vertex colored architecture graph A′ = (P ′, C ′, col′P , col′C) as follows:

• P ′ = {1, 2, . . . , |P | · (blog2(| colC |)c+ 1)}

•
C ′ = {{i, j} | j = i+ |P |, i, j ∈ P ′}
∪ {{i, j} | l = lvl(i) = lvl(j) ∧ {p(i),p(j)} ∈ C ∧ bdl(colC({i, j})) = 1, i, j ∈ P ′}

• ∀p ∈ P ′ : col′P (p) = colP (p) + | colP | · lvl(p)

• ∀c ∈ C ′ : col′C(c) = 1

where:

p : P ′ → P, p 7→ ((p− 1) mod |P |) + 1

lvl : P ′ → P, p 7→
⌊
p− 1

|P |

⌋
bdi : N+ → {0, 1}, n 7→ the ith digit of the binary representation of n

we have A and A′ then have isomorphic automorphism group, a proof of which is beyond
the scope of this thesis.

Example 4.2: Reducing Totally Colored Architecture Graphs

Consider again the totally colored architecture graph presented in Example 4.1. A vertex
colored architecture graph with the same automorphism group can be described as follows,
see Figure 4.2 for a graphical representation:

2This construction is based on a description given in the nauty manual accessible at http://pallini.di.uniroma1.
it/Guide.html.
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• P ′ = {1, 2, 3, 4, 5, 6, 7, 8}

• C ′ = {{1, 2}, {3, 4}, {1, 5}, {2, 6}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}, {7, 8}}

• col′P (1) = 1, col′P (2) = 1, col′P (3) = 2, col′P (4) = 2,
col′P (5) = 3, col′P (6) = 3, col′P (7) = 4, col′P (8) = 4

• ∀c ∈ C : col′C(c) = 1

1 2 3 4

5 6 7 8

Figure 4.2: Vertex colored automorphism graph.

Thus we can construct the automorphism group of any architecture graph by first transforming
the graph into an isomorphic vertex colored graph, finding a generating set for its automorphism
group using nauty and then a corresponding BSGS using the algorithms presented in Chapter 3.

4.3 Automorphism Decomposition

Figure 4.3: Exynos architecture with two different types of processing elements. Each processing
element has its own L1 cache and all processing elements of the same type share a separate L2
cache. All processing elements can also communicate via shared RAM.

The architecture graphs we are dealing with in practice are based on real world abstract MPSoC
architectures. Many of these are either separable or hierarchical in nature, properties that we, as it
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Figure 4.4: HAEC architecture with four separate SoCs, each similar to Parallellas Epiphany
coprocessor. The processing elements on one SoC can communicate with each other via optical
links and with all processing elements on an adjacent SoC via a wireless link.

turns out, can use to decompose the autmorphism groups of the corresponding architecture graphs
into direct and wreath products which we introduced in Section2.2.4. This is not just an interesting
observation but can also help us solve the task mapping problem more efficiently for these types of
architecture graphs as discussed in Section5.4.

Separable architecture graphs are all those made up of “islands” of processing elements for
which no automorphism maps from one island to another. This occurs e.g. for abstract MPSoC
architectures with several distinct processor types. Consider e.g. the Exynos architecture shown in
Figure 4.3. Its automorphism group GExynos is the direct product of the automorphism groups of
the subgraphs created by restricting that architecture graph to one of the two processor types, i.e.:

GExynos = 〈{(1 2), (2 3), (2 4), (3 4)}〉 × 〈{(5 6), (6 7), (6 8), (7 8)}〉
= 〈{1 2), (2 3), (2 4), (3 4), (5 6), (6 7), (6 8), (7 8)}〉

Hierarchical architecture graphs on the other hand arise from abstract architecture graphs that are
made up of interconnected identical “clusters” of processing elements. Consider e.g. the HAEC
architecture shown in Figure 4.4. We can model the corresponding architecture graph as a hyper-
graph according to Definition 2.14. Its automorphism group GHAEC is then the wreath product of
one cluster’s automorphism group and the autormophism group of the “cluster graph” itself, i.e.:

GHAEC,proto = 〈{(1, 4)(2, 3)(5, 8)(6, 7)(9, 12)(10, 11)(13, 16)(14, 15),

(2, 5)(3, 9)(4, 13)(7, 10)(8, 14)(12, 15)}〉
GHAEC,super = 〈{(1 4)(2 3)}〉
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and:
GHAEC = GHAEC,proto oGHAEC,super

We can either manually specify whether a given architecture graph is separable or hierarchical or
automatically detect this property by using the algorithms presented in [4] which are able to deter-
ministically discover possible direct and wreath product decompositions for any given permutation
group. These algorithms are implemented in mpsym but their inner working is beyond the scope of
this thesis.

4.4 Determining Partial Automorphisms

Unfortunately, there seems to be no existing research on efficient algorithms for determining a
generating set for a graphs partial automorphism inverse monoid.

Determining whether a given partial permutation is a partial automorphism of an architecture
graph is trivial. However, the total number of possible partial permutations of {1, . . . , |P |} is∑|P |
i=0

|P |!
(|P |−i)! =

(∑|P |
i=0

1
i!

)
(|P | + 1)! ≈ e · (|P | + 1)! and thus generally very large. To avoid

searching through all of them to find a suitable generating set we can make use of the fact that if a
partial permutation is not contained in a partial permutation inverse monoid then neither are any
of its extensions (or their extensions and so on), where we define extensions as follows:

Definition 4.2: Extensions of a Partial Permutation

Given a partial permutation s of a set Ω, an extension of s is another partial permutation
t with dom(t) = dom(s) ∪ {x} for an x ∈ Ω \ dom(s) and im(t) = im(s) ∪ {x} for an
x ∈ Ω \ im(s). We refer to all extensions of s (of which there are |dom(s)|2) by ext(s) and
to the set resulting from a recursive application of ext as ext∗(s).

Example 4.3: Extensions of a Partial Permutation

Let Ω = Ω4 and s = (1, 2), i.e. dom(s) = im(s) = {1, 2}, then ext(s) =
{(1, 2)(3), (1, 2)(4), (1, 2)[3, 4], (1, 2)[4, 3]}.

So formally, it holds that if s is not a partial automorphism of an architecture graph then neither
are any of the partial permutations in ext∗(s).

Algorithm 4.9 is based on this. If we invoke this recursive algorithm with s = 0 and M initially
only containing 0 and 1{1,...,|P |}, then the algorithm will traverse a search tree of all possible
partial permutations s of {1, . . . , |P |} in depth first fashion and adjoin any s /∈M that is a partial
automorphism of the architecture graph A to M3. Because the nodes of any subtree of this search
tree with root s are exactly ext∗(s), we can completely prune such a subtree if s is not a partial
automorphism of A.

3This of course assumes that we can efficiently modify our representation of M in a suitable way such as to adjoin
s to M , refer to [5] to see that this is indeed possible.
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Algorithm 4.9 Find partial automorphism inverse monoid generating set

1: procedure PARTIAL AUTOM GENERATORS(A, s, M)
2: if s is a partial automorphism of A then
3: Adjoin s to M
4: else
5: return
6: end if
7:

8: for Every extension s′ of s do
9: PARTIAL AUTOM GENERATORS(A, s′, M)

10: end for
11: end procedure

Unfortunately, preliminary experiments have shown that in practice, Algorithm 4.9 is too slow
for all but the smallest architecture graphs. Developing a more efficient algorithm could be the
subject of further research.
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Chapter 5

The TMOR Problem

This chapter concerns itself with the problem at the heart of this thesis: the TMOR problem
introduced in Section 1.3. In Section 5.1 we will first formalize the TMOR problem in light of the
theoretical foundations laid out in Chapter 2 and then describe some algorithms that address it
in Section 5.2. Finally, Section 5.4 will introduce some important optimizations for certain types
of separable and hierarchical architecture graphs. We will not consider partial symmetries in this
chapter, for one because most of what is discussed here1applies to them equally and for another
because, as we have seen previously, the algorithms we use for determining and representing them
are not quite efficient enough to be useful in practice.

5.1 Definition

In Chapter 4 we have seen how to model abstract MPSoC architectures as undirected graphs and
how to describe their symmetries and partial symmetries by finding the automorphism groups and
partial automorphism inverse monoids of these undirected graphs respectively. In a similar manner
we will now formalize what we mean when we say “task mapping” and relate this concept to that
of architecture graphs.

Definition 5.1: Task Mapping

Given an architecture graph A = (P,C, colP , colC), a k-task mapping is a sequence T kA =
(t1, t2, . . . , tk), ti ∈ P,∀1 ≤ i ≤ k. Instead of ti we also write T kA[i].

1Except optimization by decomposition.
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Example 5.1: Task Mapping

Consider again the task mappings presented in Figure 1.2, and assume that for the given
abstract MPSoC architecture we construct the architecture graph presented in Figure 5.1.
Then the task mappings (a)-(d) are described by:

• (a) → (1, 5, 9, 13)

• (b) → (1, 9, 5, 13)

• (c) → (1, 2, 3, 4)

• (d) → (2, 6, 10, 14)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5.1: Architecture graph corresponding to abstract MPSoC architecture presented in
Figure 1.2.

In general, we will not always be interested in every possible task mapping for a given architecture
graph. For example, we might not be interested in task mappings which map two or more tasks to
the same processing element. To formalize this notion, we introduce the concept of task mapping
spaces:

Definition 5.2: Task Mapping Space

Given an architecture graph A = (P,C, colP , colC), we denote the space of all admissible
k-task mappings on A by Θk

A and note that Θk
A ⊆ P k.

Example 5.2: Task Mapping Space

The k-task mapping space for the architecture graph from Example 5.1 which only ad-
mits task mappings for which no two tasks share the same processing element is Θk

A ⊂
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{1, 2, . . . , 16}k such that ∀T kA ∈ Θk
A : i 6= j =⇒ T kA[i] 6= T kA[j].

Remember that we are interested in finding task mappings that are equivalent by symmetry. We
can find such task mappings via the automorphisms of A represented as permutations as follows:

Definition 5.3: Task Mapping Permutation

Given an architecture graph A = (P,C, colP , colC), a k-task mapping T kA = (t1, t2, . . . , tk) ∈
Θk
A and a permutation g over P , we define g : Θk

A → Θk
A with:

g(T kA) =

{
(g(t1), g(t2), . . . , g(tk)), if (g(t1), g(t2), . . . , g(tk)) ∈ Θk

A

undefined, otherwise

From now on we assume that if G is the automorphism group of A, then ∀T kA ∈ Θk
A : ∀g ∈

G : g(T kA) ∈ Θk
A (alternatively: we assume that Θk

A is a G-set) such that the following
discussions about task mapping orbits make sense.

Example 5.3: Task Mapping Permutation

As we shall see in Example 5.5, the permutation g =
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15) is an automorphism of the architec-
ture graph from Example 5.1 and it holds e.g. that g((1, 5, 9, 13)) = (4, 8, 12, 16).

If we seek to determine all task mappings equivalent by symmetry to a given task mapping we
can again make use of the concept of group orbits introduced in Definition 2.10. By introducing a
strict ordering on any task mapping space we can furthermore find a canonical representative for
any such orbit, analogous to Definition 2.11. This is everything we need to formalize the TMOR
problem: In theory, given an architecture graphs automorphism group, we can partition any task
mapping space into orbits and then reduce these orbits to their canonical representatives.

Definition 5.4: Task Mapping Ordering

On any k-task mapping space Θk
A we define a total strict ordering < ⊆ Θk

A×Θk
A as follows:

Let T kA = (t1, t2, . . . , tk), T̃ kA = (t̃1, t̃1, . . . , t̃k) ∈ Θk
A then:

(T kA, T̃
k
A) ∈ <⇔ ∃1 ≤ i ≤ k : (∀1 ≤ j < i : tj = t̃j) ∧ (ti < t̃i)

This type of ordering is called lexicographical. We also write T kA < T̃ kA.
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Example 5.4: Task Mapping Ordering

For the task mappings from Example 5.1 it holds that:

(1, 2, 3, 4) < (1, 5, 9, 13) < (1, 9, 5, 13) < (2, 6, 10, 14)

Definition 5.5: Task Mapping Orbit

Given a permutation group G and a task mapping space Θk
A, we define the orbit of some

task mapping T kA ∈ Θk
A as T k,GA = [T kA]∼G

= {g(T kA) | g ∈ G}. We also define repr(T k,GA )
analogous to Definition 2.11, with < as in Definition 5.4. When G is the automorphism
group of A we simply write repr(T kA).

Example 5.5: Task Mapping Orbits

Consider again the architecture graph A from Example 5.1 and the task mapping space Θk
A

from Example 5.2. We can now formally determine which task mappings are equivalent by
symmetry to e.g. T 4

A,1 = (1, 5, 9, 13). This is analogous to determining T 4,G
A,1 where G is the

automorphism group of A. It is well known that the automorphism group G of any n × n
regular mesh architecture graph A is ismorphic to the dihedral group D8 with |D8| = 8. It
holds that:

G = 〈{(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15),

(2 5)(3 9)(4 13)(7 10)(8 14)(12 15)}〉

which we can interpret geometrically as reflections about the meshes upper left to lower
right diagonal and its vertical center respectively. As can be readily verified, we have:

T k,GA,1 = {(1, 2, 3, 4), (1, 5, 9, 13), (4, 3, 2, 1), (4, 8, 12, 16),

(13, 14, 15, 16), (13, 9, 5, 1), (16, 12, 8, 4), (16, 15, 14, 13)}

And repr(T kA,1) = (1, 2, 3, 4). We can determine how many task mapping orbits there are in

total by making use of Lemma 2.2.3: For all g ∈ G, let Θk,g
A = {T kA ∈ Θk

A | g(T kA) = T kA}
and note that:

|Θk,g
A | =

{
|P g|!

(|P g|−k)! , if |P g| ≥ k
0, otherwise
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as should be obvious from the definition of Θk
A. We have:

|Θk,()
A | = 16!/12! = 43680

|Θk,(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)
A | = 0

|Θk,(1 13 16 4)(2 9 15 8)(3 5 14 12)(6 10 11 7)
A | = 0

|Θk,(1 16)(2 12)(3 8)(5 15)(6 11)(9 14)
A | = 4!/0! = 24

|Θk,(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)
A | = 0

|Θk,(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)
A | = 0

|Θk,(1 4 16 13)(2 8 15 9)(3 12 14 5)(6 7 11 10)
A | = 0

|Θk,(2 5)(3 9)(4 13)(7 10)(8 14)(12 15)
A | = 4!/0! = 24

By averaging these set sizes we obtain 1
8 (43680+24+24) = 5466. Since |Θk

A| = 16!
14! = 43680,

if we could successfully determine representatives for every orbit of G, we would effectively
reduce the size of the task mapping search space by a factor of 43680

5466 ≈ 8.

5.2 Algorithmic Approaches

Algorithm 5.10 Obtain orbit identifier.

1: procedure ORBIT IDENTIFIER(T kA)
. reprs retains its state across invocations.

2:

3: if A has changed since last invocation then
4: reprs← ()
5: end if
6:

7: if repr(T kA) /∈ reprs then
8: Append repr(T kA) to reprs
9: end if

10:

11: return index of repr(T kA) in reprs
12: end procedure

It now remains to discuss how we can partition a task mapping space in practice. Because
|Θk
A| might be very large, in general it is impractical to explicitly determine all orbits for a given

automorphism group. An iterative approach is more feasible: We consider a series of task mappings
in turn and for each of them determine the canonical representative of the orbit it lies in. In this
way, for every new task mapping we can discern whether we have already encountered a task
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mapping in the same orbit earlier (and can thus e.g. skip some expensive simulation step for this
new task mapping) by matching canonical representatives. Algorithm 5.10 is a formalization of
this. It takes as its argument a task mapping and returns an integer uniquely identifying the orbit
in which this task mapping lies. The central importance of orbit representatives to this approach
is why introduced the term TMOR.

Algorithm 5.10 is particularly interesting because it lends itself to be used in conjunction with
e.g. a genetic algorithm which generates new “interesting” task mappings based on the simulated
characteristics of old ones. We can then simply discard those task mappings that are equivalent by
symmetry to, i.e. lie in the same orbit as, previously generated ones.

Algorithm 5.11 Determine canonical representatives via orbit enumeration.

1: procedure TMOR ORBIT(T kA, G = 〈S〉)
. G is the automorphism group of A.

2:

3: orbit← {}
4: while orbit is changing do
5: for T̃ kA ∈ orbit, g in S do

6: orbit← orbit ∪ {g(T̃ kA)}
7: end for
8: end while
9:

10: return min(orbit)
11: end procedure

Algorithm 5.12 Determine canonical representatives via group enumeration.

1: procedure TMOR ITERATE(T kA, G)
. G is the automorphism group of A.

2:

3: repr(T kA)← T kA
4: for g ∈ G do
5: if g(T kA) < repr(T kA) then
6: repr(T kA)← g(T kA)
7: end if
8: end for
9:

10: return repr(T kA)
11: end procedure

In order to implement Algorithm 5.10, we need to be able to efficiently determine repr(T kA). If
we desire guaranteed correctness there are two basic approaches which both completely enumerate
T k,GA : We either enumerate the orbit explicitly via the fixed point Algorithm 5.11 or by iterating
over the elements of G as in Algorithm 5.12. We will also refer to these algorithms as bruteforce
orbit enumeration and bruteforce iteration respectively.

If we (as is usually the case) want to find canonical representatives for a large number of task
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Algorithm 5.13 Determine canonical representatives via local search.

1: procedure TMOR LOCAL SEARCH(T kA, G = 〈S〉)
. G is the automorphism group of A.

2:

3: repr(T kA)← T kK
4: while repr(T kA) is changing do
5: repr(T kA)← min({g(repr(T kA)) | g ∈ S})
6: end while
7:

8: return repr(T kA)
9: end procedure

mappings, we can potentially improve performance in both cases by hashing already discovered
canonical representatives and aborting the task mapping orbit discovery when a known canonical
representative is encountered. We could also choose to additionally hash a number of random task
mappings per orbit in an attempt to abort the enumeration earlier.

It is hard to say in general if bruteforce orbit enumeration or iteration is more efficient for a
given automorphism group. Overall, bruteforce iteration seems to be most suitable if |G| is small
and bruteforce orbit enumeration if Θk

A is partitioned into many small orbits by G. Unfortunately,
this latter characteristic is not easily determinable without actually computing the complete orbit
partition. We shall analyse this matter more thorougly in Section 5.3.

If both methods of orbit enumeration prove to be impractically slow, we can employ Algo-
rithm 5.13 which computes an approximate canonical representative via local search. In effect, this
algorithm performs breadth first search within an orbit. The returned canonical representative is
thus not guaranteed to be the correct one which might be acceptable depending on the application
and likelihood that this will occur. Note that it might be sensible to append additional elements to
the generating set S, e.g. {g−1 | g ∈ S} or random elements of G, in order to “widen” the search
tree and/or to employ e.g. simulated annealing or similar heuristic techniques instead of breadth
first search, refer to e.g.[16]. These potential improvements are however beyond the scope of this
thesis.

5.3 Complexity and Accuracy Considerations

The time complexity of bruteforce iteration is clearly O(|G|). Furthermore, the execution time of
bruteforce iteration should not vary substantially with k, assuming that iterating through G is more
computationally expensive than finding g(T kA).

At worst, bruteforce orbit iteration only adds a single element to T k,GA in every iteration and its

runtime complexity is thus O(|S|(1 + 2 + · · ·+ (|T k,GA | − 1))) = O(|S||T k,GA |2). If Θk
A is partitioned

into relatively few but large orbits, finding representatives via orbit enumeration is potentially
prohibitively expensive.

As we have demonstrated in Example 2.12, determining the number of task mapping orbits
for a given automorphism group G is possible algorithmically in O(|G|) time by making use of
Lemma 2.2.3. Since these orbits partition Θk

A, we also know that their sizes must sum to |Θk
A|

and we can thus easily determine the average orbit size. However, the total execution time of the
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bruteforce orbit enumeration algorithm largely depends on the size of the largest orbit or orbits2.
There are two reasons for this:

• For a given task mapping T kA the runtime complexity of the bruteforce orbit enumeration

algorithm grows superlinearly with |T k,GA | as described above.

• For two orbits, one significantly larger than the other, the probability of some T kA randomly
drawn from a uniform distribution over Θk

A lying in the larger orbit is greater than the
probability of it lying in the smaller orbit.

Unfortunately, it is very difficult to determine a tight upper bound for the size of any given orbit
for even moderately large values of k. We can however trivially state that any orbit can at most
be of size |G|, irrespective of |Θk

A|. This is because every element in an orbit is “reachable” from

every other element in the same orbit via some g ∈ G, i.e. ∀T kA ∈ Θk
A : ∀T kA,1, T kA,2 ∈ T

k,G
A : ∃g ∈

G : g(T kA,1) = T kA,2
3. This also implies that O(〈S〉 |T k,GA |2) = O(〈S〉 |G|2).

It remains to ask whether we expect the average orbit size to increase with k. A simple observa-
tion shows that this is almost certainly the case: Assuming again that no two tasks can be mapped
to the same processing element it trivially holds that |Θk+1

A | = (|P | − k) · |Θk
A|. Thinking back to

Example 2.12, for the number of orbits of Θk
A we have:

|Θk
A /∼G | =

1

|G|
∑
g∈G
|Θk,g
A |

with:

|Θk,g
A | =

{
|P g|!

(|P g|−k)! , if |P g| ≥ k
0, otherwise

Since ∀g ∈ G : |P g| ≤ |P | we thus have |Θk+1,g
A | ≤ (|P | − k) · |Θk,g

A |. And thus for the average orbit
size it holds that:

|Θk+1
A |

|Θk+1
A /∼G |

≥ |Θk
A|

|Θk
A /∼G |

i.e. the average orbit size cannot decrease with k. Thus we can reasonably expect bruteforce orbit
enumeration to perform worse for larger values of k.

The runtime complexity of the local search algorithm obviously mainly depends on the size of
the chosen generating set for G. On the other hand, a larger generating set may sometimes make
finding correct representatives more likely, i.e. it can potentially be sensible to trade off execution
time for increased accuracy by adding redundant elements to G’s generating set during local search
as described previously.

2This does not hold if G partitions Θk
A into a large number of very small orbits and relatively few large ones

whose combined size is still small compared to |Θk
A|. We shall not analyse when or if this occurs in detail.

3It can additionally be shown that the size of every orbit must divide |G|. In theory we could use this fact to
find one or several possibilities for the orbit size distribution by looking for an integer partition of |Θk

A| which has

|Θk
A /∼G | summands ∈ {s ∈ N+ | s | |G|}. However, because the number of orbits is typically very large even for

moderately large values of k, known integer partition algorithms cannot cope with this task, refer to e.g. [21].
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In general, we expect local search to execute faster than bruteforce iteration or orbit enumera-
tion, especially for large values of |G| such that our main concern with this algorithm is accuracy. A
trivial observation we can make here is that, as with the execution time of bruteforce orbit enumer-
ation, this metric should mainly depend on the orbit size distribution. This is because during local
search we never “leave” a task mapping’s orbit, such that smaller orbits make it more likely that
the representative returned is the correct one. Note that there may be pathological cases where
local search never or almost never produces correct representatives for a given automorphism group
and generating set but investigating whether and when this happens is beyond the scope of this
thesis.

In conclusion, the performance of bruteforce iteration and orbit enumeration as well as local
search depends directly or indirectly (via an upper bound on the orbit size) on |G|. Only bruteforce
enumeration is likely to be significantly impacted by k.

5.4 Optimization via Decomposition

As we discussed in Section4.3, we can decompose the automorphism groups of certain separable
and hierarchical architecture graphs into direct and wreath products. We can make use of this to
potentially decrease the execution time of the algorithms presented in the previous section. This
idea was first presented in [4] in the context of model checking, see also [3].

Essentially, decomposition allows us to solve the task mapping problem separately for smaller
permutation groups than the full automorphism group. Algorithms 5.14 and 5.15 demonstrate how
this works for the case of direct and wreath product decomposition respectively. For a definition
of σ(Gproto) = {σi(Gproto) | 1 ≤ i ≤ deg(Gsuper)} and σ(Gsuper) and proof of correctness of these
algorithms refer to [4]. Note that it is possible to employ these algorithms recursively, i.e. we could
decompose an automorphism group into a direct or wreath product and further decompose the
components of this product into direct or wreath products themselves.

Algorithm 5.14 Determine canonical representatives for separable architecture graphs.

1: procedure TMOR DIRECT PROD(T kA, G1, . . . , Gn)
. G1 × · · · ×Gn is the automorphism group of A.
. TMOR is any canonical representative algorithm.

2:

3: repr(T kA)← TMOR(T kA, G1)
4:

5: for i = 2 . . . n do
6: repr(T kA)← TMOR(repr(T kA), Gi)
7: end for
8:

9: return repr(T kA)
10: end procedure

We can especially expect hierarchical decomposition to result in significant speedups because
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Algorithm 5.15 Determine canonical representatives for hierarchical architecture graphs.

1: procedure TMOR WREATH PROD(T kA, Gproto, . . . , Gsuper)
. Gproto oGsuper is the automorphism group of A.
. |σi(Gproto)| = |Gproto|,∀1 ≤ i ≤ deg(Gsuper) and |σ(Gsuper)| = |Gsuper|.
. TMOR is any canonical representative algorithm.

2:

3: repr(T kA)← T kA
4:

5: for i = 1 . . . deg(Gsuper) do
6: repr(T kA)← TMOR(repr(T kA), σi(Gproto))
7: end for
8:

9: return TMOR(repr(T kA), σ(Gsuper))
10: end procedure

the combined order of two permutation groups Gproto and Gsuper
4 making up a wreath product

G = Gproto oGsuper is usually much smaller than the order of the wreath product itself.

4And thus of all σi(Gproto) and σ(Gsuper).
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Chapter 6

Experimental Results

This chapter describes experimental results collected during the evaluation of the most important
algorithms presented in previous chapters. We implement these algorithms both in the computer
algebra system/scripting language GAP [8] and in mpsym. All experiments were performed on a
single machine with two Intel® Core™ i5-6200U CPU cores and 4 GiB DDR3-SDRAM.

Section 6.1 first describes the abstract MPSoC architectures for which we perform our exper-
iments. In Section6.2 we then examine how fast we can construct a BSGS for an architecture’s
automorphism group. Finally, in Section6.3 we compare the performance of the different TMOR
algorithms outlined in Section5.2 for large sets of randomly generated k-task mappings, for different
values of k.

Again, we do not consider partial automorphisms for practical reasons as indicated in the intro-
duction of Chapter 5.

6.1 Architectures

We perform our experiements for four examplary abstract MPSoC architectures based on real-
world MPSoCs. We briefly list and visualize these architectures here but do not explicitly provide
architecture graphs for brevity’s sake. In the following sections we denote the architecture graph
corresponding to an architecture X by AX and the automorphism group of AX by GX .

• The Exynos1 MPSoC developed by Samsung, with Octa Big-Little multi core configuration.
We have already encountered this architecture in Section 4.3, see Figure 4.3.

• A 16 by 16 processing element regular mesh based on the Epiphany [14] coprocessor of the
Parallella2 board. See Figure 6.1.

• The HAEC [6] architecture, consisting of several optical-link-based MPSoCs connected to
each other by wireless links. We have already encountered this architecture in Section 4.3,
see Figure 4.4.

1https://www.samsung.com/semiconductor/minisite/exynos/
2https://www.parallella.org/
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Figure 6.1: Parallela’s Epiphany coprocessor architecture with 64 processing elements connected in
a regular mesh fashion.

Figure 6.2: Kalray MMPA-256 architecture made up of 16 identical clusters of 16 processing el-
ements fully connected via shared memory. The clusters themselves are connected in a 2D torus
topology.
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• The Kalray MMPA-256 3 architecture made up of 16 identical compute clusters. See Fig-
ure 6.2.

For reference we also list the orders of these four architectures’ automorphism groups here:

• |GExynos| = 576.

• |GParallella| = 8.

• |GHAEC| = 8192 and GHAEC = GHAEC,proto o GHAEC,super with |GHAEC,proto| = 8 and
|GHAEC,super| = 2

• |GKalray| ≈ 1.079 · 10214 and GKalray = GKalray,proto o GKalray,super with |GKalray,proto| = 16!
and |GKalray,super| = 8

6.2 Automorphism Group Construction

6.2.1 Methodology

We first analyse how quickly we can construct a BSGS for a given architectures automorphism
group. This is a prerequisite to solving the TMOR problem and we will from now on use the term
setup time to refer to the overhead incurred by this. Constructing a BSGS for an architecture graph
AX requires us to perform the following steps:

• 1. Construct a graph data structure representing AX .

• 2. From this data structure, find a generating set for GX .

• 3. From this generating set, construct a BSGS for GX .

For Step 1 and 2, our GAP implementation makes use of the grape [19] package and mpsym makes
use of the Boost Graph Library [18] and nauty [12]4, a program which is able to efficiently determine
generating sets for the automorphism groups of vertex colored graphs5

Step 3 is where the Schreier-Sims Algorithm comes into play. GAP does not directly expose its
internal implementations of the different BSGS construction algorithms. Instead, it automatically
chooses which algorithm variant or variants to apply for any given generating set based on complex
heuristics. mpsym currently only implements the “basic” Deterministic Schreier-Sims Algorithm and
the Random Schreier-Sims Algorithm. Since Step 3 is usually significantly more computationally
expensive than Step 1 and 2, we only present total execution time data. We compare the following
algorithm variants:

• BSGS construction using GAP.

3https://www.kalrayinc.com/
4grape also uses nauty internally.
5Remember that we showed in Section 4.2 how to convert any totally colored undirected graph to an isomorphic

vertex colored one.
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• BSGS construction using mpsym. We employ both the Deterministic Schreier-Sims Algorithm
on its own and the Random followed by the Deterministic Schreier-Sims Algorithm (to guar-
antee correctness).

We also employ the Random Schreier-Sims Algorithm on its own. Note, however, that we
do this with the sole purpose of demonstrating how the execution times of a single run of
the Deterministic and Random Schreier-Sims Algorithms compare. We do not attempt to
draw a direct comparison between the two algorithms because the Random Schreier-Sims
Algorithm it is not guaranteed to produce a correct BSGS. Of course we could simply choose
w to be suitably large as to make correctness of the constructed BSGS very likely. But
because mpsym currently does not implement any of the algorithms outlined in Section 3.3 for
detecting/guaranteeing correctness of a BSGS, we have no simple way of checking whether
a BSGS constructed this way is correct. Thus, we cannot empirically verify the relationship
between w and the likelihood of a correctly constructed BSGS6 for any given generating set.
For this reason, we omit this information altogether.

6.2.2 Results

Figure 6.3 visualizes the BSGS construction execution times for three of our four architectures using
both our GAP and mpsym implementations. We can make the following observations:

• For these three architectures mpsym outperforms GAP significantly.

• For the HAEC architecture, the difference in execution time between the Random and Deter-
ministic Schreier-Sims Algorithm, as implemented in mpsym, is most pronounced. Neverthe-
less, combining both algorithms does not result in a speedup over the deterministic algorithm
alone.

We have purposefully omitted the Kalray architecture from Figure 6.3 because deterministically
constructing a BSGS for GKalray is computationally very expensive. While GAP is able to so after
several seconds, mpsym is unable to even after several minutes of execution time. However, we can
potentially do much better in two ways:

• (1) Avoiding BSGS construction: Using Algorithm 5.15 we can solve the TMOR problem
without the need for a BSGS for GKalray,proto oGKalray,super. Instead, we construct BSGSs for
σ(GKalray,super) and σ(GKalray,proto)7.

• (2) Symmetric group detection: There exists an efficient and reliable Monte-Carlo algorithm
for testing whether a given generating set generates a symmetric group, refer to e.g. [10]
Chapter 3, such that it is possible to explicitly construct a BSGS for S16 without the need
to run the Schreier-Sims algorithm, even when we are initially unaware that GKalray,proto is a
symmetric group.

6Unless we verify correctness via complete group enumeration which is obviously impractical for large automor-
phism groups.

7This obviously also applies to other hierarchical architectures, e.g. HAEC. But since BSGS construction for
GHAEC is already very fast we only present a comparison for the Kalray architecture.
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Figure 6.3: BSGS construction execution times for the Exynos, HAEC and Parallella architectures.
The value w = 10 was chosen for mpsyms implementation of the Random Schreier-Sims Algorithm.
Boxplots were generated from 1000 runs each.
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Table 6.1 compares the total setup time when using GAP versus when using mpsym in combina-
tion with the methods described above. Clearly, using method (1) is much less computationally
expensive than constructing a BSGS for GKalray. Of course taking this approach implies that we
must subsequently use Algorithm 5.15 to solve the TMOR problem. In Section 6.3 we will analyse
whether this results in further speedup. Using method (2) results in an additional speedup of about
25%.

Method Execution Time
GAP 15.31± 0.05s
mpsym, (1) 3.31 · 10−1 ± 0.01 · 10−1

mpsym, (1) + (2) 2.43 · 10−1 ± 0.07 · 10−1

Table 6.1: BSGS construction execution times for the Kalray board. mpsym makes use of the
Deterministic Schreier-Sims Algorithm. Means and standard deviations obtained from 10 runs
each and rounded to nearest two/three decimal places.

6.3 Solving the TMOR problem

6.3.1 Methodology

We now analyse how quickly we are able to solve the TMOR problem for each of our four archi-
tectures. To this end we generate 10,000 suitable random k-task mappings per architecture by
uniformly sampling from Θk

A from Example 5.2 (for k ∈ {4, 8, 12, 16}) and then determine how long
it takes to find orbit representatives for all of them using each of the following algorithms:

• Algorithm 5.12, i.e. bruteforce iteration, implemented in both GAP and mpsym.

• Algorithm 5.11 , i.e. bruteforce orbit enumeration, implemented in both GAP and mpsym.

• Algorithm 5.13, i.e. local search, implemented in both GAP and mpsym. Since the taks
mapping representatives determined via local search are not guaranteed to be correct, we
also note the success rate of this algorithm, i.e. the ratio of correctly determined orbit
representatives to the number of task mappings. For the sake of brevity we do not experiment
with any of the possible augmentations to this algorithm discussed in Section5.2.

• Algorithm 5.15 , i.e. hierarchical decomposition, implemented in mpsym. We perform de-
composition explicitly for the HAEC and Kalray architectures. We use this algorithm in
combination with both bruteforce iteration and local search and note any execution time
and/or accuracy improvements.

Due to time constraints, we did not implement hierarchical decomposition in GAP and con-
sequently only present data obtained by use of our mpsym implementations for the HAEC and
Kalray architectures.
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6.3.2 Results

We now present numerical results and analyse if they are consistent with the considerations we
made in Section5.3. For all figures in this section, presented execution times are means of ten
independent runs and local search results are annotated with the achieved accuracy.

Exynos

Starting with the results for the Exynos architecture presented in Figure 6.4 we can already make
several important observations:

• Bruteforce orbit enumeration is faster than bruteforce iteration for the chosen values of k but
its performance, as expected, depends more strongly on k.

• Our mpsym implementations of bruteforce orbit enumeration and iteration are more than an
order of magnitude faster than the corresponding GAP implementation.

• Local search, as implemented in both GAP and mpsym, is significantly faster than bruteforce
orbit enumeration and iteration and returns the correct representative for all 10,000 task
mappings.

Parallella

The results for the Parallella architecture presented in Figure 6.5 exhibit similar trends. Here
however, bruteforce iteration is faster than orbit enumeration for the chosen values of k which is
most likely due to the very small order of Parallellas automorphism group. Nevertheless, local
search is still faster than bruteforce iteration and achieves perfect accuracy as well.

HAEC

For the HAEC architecture, for which results are presented in Figure 6.6, the performance of
bruteforce orbit enumeration again strongly depends on k. Figure 6.7 hints at why this is the case.
It visualizes how the size of more and more orbits approaches or equals |GHAEC| as k grows8.

Furthermore we can observe that hierarchically decomposing HAECs automorphism group re-
sults in a speedup of several orders of magnitude when used in combination with bruteforce orbit
enumeration or iteration and a jump from mediocre to perfect accuracy when used in combination
with local search.

Kalray

The benefits of hierarchical decomposition are made even more clear by the results for the Kalray
architecture presented in Figure 6.8. Here, without architecture graph both bruteforce orbit enu-
meration and iteration, implemented in both GAP and mpsym, are not able to find a representative
for a single task mapping even after executing for several minutes and local search is not able to
accurately determine even a single representative. Finding representatives for thousands of task
mappings without hierarchical decomposition is thus completely infeasible.

8Note that all orbit sizes divide |GHAEC|.
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Figure 6.4: TMOR results for the Exynos architecture.
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Figure 6.5: TMOR results for the Parallella architecture.
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Figure 6.7: Orbit size distribution for 100 random task mappings for the HAEC architecture, for
different values of k. n refers to the number of occurences of orbits of the corresponding size.
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With architecture graph decomposition alone, the situation still looks dire: Each of the clusters
making up the Kalray architecture has the automorphism group GKalray,proto = S16 and similarly,
all σi(GKalray,proto) ∈ σ(GKalray,proto) are isomorphic to S16. Because |S16| = 16!, albeit much
smaller than the complete automorphism group, is still very large, bruteforce orbit enumeration and
iteration slow and local search remains unacceptably inaccurate. This is however easily remedied
because symmetric permutation groups are transitive which allows us to trivially solve the TMOR
problem for all σi(GKalray,proto) ∈ σ(GKalray,proto) 9. Since in this case |GKalray,super| is small, the
overall TMOR problem becomes feasible.

Figure 6.8 visualizes results obtained using both architecture graph decomposition and the
aforementioned transitive group optimization. Finding correct representatives for all 10,000 task
mappings takes less than a second in total in all cases and local search achieves perfect accuracy as
well.

9Since there is only one orbit, the representative is the same for every possible task mapping.

63



Chapter 7

Conclusion

In this thesis we have demonstrated how we can simplify MPSoC task mapping by exploiting sym-
metries inherent in common MPSoC architectures. In doing so we have explored some fundamental
computational group theory concepts, data structures and algorithms. We have seen how to de-
scribe abstract MPSoC architecture as graphs and how to extract a representation of their (partial)
symmetries from this description. We have also introduced and formalized the TMOR problem
and devised several algorithms to adress it. Experiments on real world MPSoC architectures have
shown that these algorithms can work well in practice. However, they are as of now not suitable
for use with partial symmetries due to shortcomings in the way we determine and represent partial
automorphism inverse monoids.

As we have seen in Chapter 6, the overhead incurred by symmetry reduction is potentially very
small, making it a sensible preprocessing step for most other task mapping algorithms. We have
also seen that mpsym is able to outperform GAP when it comes to solving the TMOR problem. As
such, development of mpsym has paid off.

However, due to the high complexity of many of the algorithms underlying computational group
theory, maintaining and extending mpsym is not possible without significant mathematical domain
knowledge, especially when correctness and efficiency of these algorithms is of high importance.
One alternative approach might thus be compiling GAP code to C in the spirit of Cython [1] and
so directly exposing its interface to a fast compiled language such as C++.

As far as the current state of mpsym goes, it is mostly complete in regard to symmetries but
lacking in regard to partial symmetries.

For the former, it might be desireable to further improve BSGS construction via careful analysis
of the success rate of the Random Schreier-Sims Algorithm as well as implementations of the
Todd-Coxeter Schreier-Sims and Sims’ “Verify” Algorithm mentioned in Section 3.3. In solving the
TMOR problem, it could furthermore be fruitful to investigate advanced local search methods as
outlined in Section 5.2 and to speed up orbit enumeration beyond the simple fixed point algorithm
currently employed by mpym.

For the latter, a first important step would be faster discovery of a generating set for the partial
automorphism inverse monoid of an architecture graph, improving over the relatively naive search
tree pruning algorithm presented in Section 4.4 which does not scale to architectures with even
a moderately large number of processing elements. Additionally, for deterministically solving the
TMOR problem we would also require a fast way of iterating through an inverse monoid or an
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altogether different approach whose complexity remains manageable even for larger sets of tasks.
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Jamshidi, K., Kissinger, T., Lehner, W., Mer-
tig, M., Nagel, W. E., Nguyen, G. T., Plet-
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Appendix A

mpsym Code Samples

Architecture graph descriptions are passed to mpsym in the form of Lua scripts. For example,
Listing A.1 shows the Lua code used to describe the HAEC architecture.

Listing A.1 haec.lua

cal mpsym = require 'mpsym'

local sg_clusters = mpsym.identical_clusters(4, 'SoC')

local sg_channels = mpsym.linear_channels(sg_clusters, 'wireless')

local prot_processors = mpsym.identical_processors(16, 'P')

local prot_channels = mpsym.grid_channels(prot_processors, 'optical')

return mpsym.ArchUniformSuperGraph:create{

super_graph = mpsym.ArchGraph:create{

clusters = sg_clusters,

channels = sg_channels

},

proto = mpsym.ArchGraph:create{

processors = prot_processors,

channels = prot_channels

}

}

Finding task mapping representatives in C++ is then possible as demonstrated in Listing A.2.
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Listing A.2 haec map tasks.cpp

auto arch_graph(mpsym::ArchGraphSystem::from_lua("haec.lua"));

std::vector<mpsym::TaskMapping> task_mappings{

{1, 45, 35, 17, 58},

{2, 46, 22, 19, 20},

{3, 11, 8, 14, 55},

{4, 38, 43, 16, 47}

// ...

};

mpsym::TaskOrbits task_orbits;

for (auto const &task_mapping : task_mappings)

arch_graph->repr(task_mapping, &task_orbits);

for (auto const &repr : task_orbits)

std::cout << "Found task orbit representative: " << repr << std::endl;
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