
Faster MPSoC Task Mapping via
Symmetry Reduction

Timo Nicolai
timo.nicolai@mailbox.tu-dresden.de

June 9, 2020

2

Contents

1. Inspirations

2. Problem Statement

3. Symmetry Reduction

4. Representing and Extracting Symmetries

5. The TMOR Problem

6. Experimental Results

7. Further Research

2

Contents

1. Inspirations

2. Problem Statement

3. Symmetry Reduction

4. Representing and Extracting Symmetries

5. The TMOR Problem

6. Experimental Results

7. Further Research

2

Contents

1. Inspirations

2. Problem Statement

3. Symmetry Reduction

4. Representing and Extracting Symmetries

5. The TMOR Problem

6. Experimental Results

7. Further Research

2

Contents

1. Inspirations

2. Problem Statement

3. Symmetry Reduction

4. Representing and Extracting Symmetries

5. The TMOR Problem

6. Experimental Results

7. Further Research

2

Contents

1. Inspirations

2. Problem Statement

3. Symmetry Reduction

4. Representing and Extracting Symmetries

5. The TMOR Problem

6. Experimental Results

7. Further Research

2

Contents

1. Inspirations

2. Problem Statement

3. Symmetry Reduction

4. Representing and Extracting Symmetries

5. The TMOR Problem

6. Experimental Results

7. Further Research

2

Contents

1. Inspirations

2. Problem Statement

3. Symmetry Reduction

4. Representing and Extracting Symmetries

5. The TMOR Problem

6. Experimental Results

7. Further Research

3

Inspirations

Original idea: [Goens et al., 2017]

Theoretical foundations: [Holt, 2005] and [East et al., 2019]

Important optimizations: [Donaldson and Miller, 2009]

3

Inspirations

Original idea: [Goens et al., 2017]

Theoretical foundations: [Holt, 2005] and [East et al., 2019]

Important optimizations: [Donaldson and Miller, 2009]

3

Inspirations

Original idea: [Goens et al., 2017]

Theoretical foundations: [Holt, 2005] and [East et al., 2019]

Important optimizations: [Donaldson and Miller, 2009]

4

Problem Statement

4

Problem Statement

Want to intelligently map tasks to processing elements

Best choice depends on underlying optimality criteria

Need to perform costly simulation!

4

Problem Statement

Want to intelligently map tasks to processing elements

Best choice depends on underlying optimality criteria

Need to perform costly simulation!

4

Problem Statement

Want to intelligently map tasks to processing elements

Best choice depends on underlying optimality criteria

Need to perform costly simulation!

5

Symmetry Reduction

One approach:

Generate promising mappings based on previous simulations
→ Traverse search space “intelligently”

Another approach:

Partition search space by (partial) symmetry
Only work with representative of each partition
→ “Collapse” search space

Both approaches can be combined!

5

Symmetry Reduction

One approach:

Generate promising mappings based on previous simulations
→ Traverse search space “intelligently”

Another approach:

Partition search space by (partial) symmetry
Only work with representative of each partition
→ “Collapse” search space

Both approaches can be combined!

5

Symmetry Reduction

One approach:

Generate promising mappings based on previous simulations
→ Traverse search space “intelligently”

Another approach:

Partition search space by (partial) symmetry
Only work with representative of each partition
→ “Collapse” search space

Both approaches can be combined!

6

Symmetry Reduction

(a)

(b) (c)

6

Symmetry Reduction

(a)

(b) (c)

7

Representing Symmetries:
Automorphism Groups

1 2

34

7

Representing Symmetries:
Automorphism Groups

1 2

34

⇒
4 1

23

⇒ (1 2 3 4)

1 2

34

⇒
1 4

32

⇒ (2 4)

8

Representing Partial Symmetries:
Partial Automorphism Inverse Monoids

1 2 3

4 5 6

7 8 9

8

Representing Partial Symmetries:
Partial Automorphism Inverse Monoids

1 2 3

4 5 6

7 8 9

⇒ [1 2][4 5][7 8]

9

Extracting (Partial) Symmetries

Describe MPSoC architecture as architecture graph

Determine Automorphism Group G :

Transform into “equivalent” vertex colored graph
Use nauty [McKay and Piperno, 2014]

Determine Partial Automorphism Inverse Monoid M:

Construct search tree of possible generators
Prune certain subtrees
Not efficient enough in practice

9

Extracting (Partial) Symmetries

Describe MPSoC architecture as architecture graph

Determine Automorphism Group G :

Transform into “equivalent” vertex colored graph
Use nauty [McKay and Piperno, 2014]

Determine Partial Automorphism Inverse Monoid M:

Construct search tree of possible generators
Prune certain subtrees
Not efficient enough in practice

9

Extracting (Partial) Symmetries

Describe MPSoC architecture as architecture graph

Determine Automorphism Group G :

Transform into “equivalent” vertex colored graph
Use nauty [McKay and Piperno, 2014]

Determine Partial Automorphism Inverse Monoid M:

Construct search tree of possible generators
Prune certain subtrees
Not efficient enough in practice

10

Extracting (Partial) Symmetries

⇒

1 2

34

L2

L2L2 L2L2

L2

L1

L1

10

Extracting (Partial) Symmetries

1 2

34

L2

L2L2 L2L2

L2

L1

L1

⇒
1 2 3 4

5 6 7 8

10

Extracting (Partial) Symmetries

1 2 3 4

5 6 7 8

⇒ {(1 2)(5 6), (3 4)(7 8)}

10

Extracting (Partial) Symmetries

{(1 2), (3 4)}⇒ Base: [1, 3]
Strong Generating Set: {(1 2), (3 4)}

11

The TMOR Problem I:
Mapping Orbits

Represent mappings by k-tuples t = (t1, t2, . . . , tk)

Define orbit tG = {((g(t1), g(t2), . . . , g(tk)) | g ∈ G}

Orbits partition search space

Reduce search space to set of canonical orbit representatives

11

The TMOR Problem I:
Mapping Orbits

Represent mappings by k-tuples t = (t1, t2, . . . , tk)

Define orbit tG = {((g(t1), g(t2), . . . , g(tk)) | g ∈ G}

Orbits partition search space

Reduce search space to set of canonical orbit representatives

11

The TMOR Problem I:
Mapping Orbits

Represent mappings by k-tuples t = (t1, t2, . . . , tk)

Define orbit tG = {((g(t1), g(t2), . . . , g(tk)) | g ∈ G}

Orbits partition search space

Reduce search space to set of canonical orbit representatives

11

The TMOR Problem I:
Mapping Orbits

Represent mappings by k-tuples t = (t1, t2, . . . , tk)

Define orbit tG = {((g(t1), g(t2), . . . , g(tk)) | g ∈ G}

Orbits partition search space

Reduce search space to set of canonical orbit representatives

12

The TMOR Problem I:
Mapping Orbits

G = 〈{(1 2 3 4), (2 4)}〉

12

The TMOR Problem I:
Mapping Orbits

G = 〈{(1 2 3 4), (2 4)}〉

12

The TMOR Problem I:
Mapping Orbits

G = 〈{(1 2 3 4), (2 4)}〉

13

The TMOR Problem I:
Mapping Orbits

Determining all orbits usually too costly

Iteratively determine and hash canonical representatives

1: procedure ORBIT IDENTIFIER(t, reprs)
2: repr← TMOR(t)
3:

4: if repr /∈ reprs then
5: Append repr to reprs
6: end if
7:

8: return index of repr in reprs
9: end procedure

13

The TMOR Problem I:
Mapping Orbits

Determining all orbits usually too costly

Iteratively determine and hash canonical representatives

1: procedure ORBIT IDENTIFIER(t, reprs)
2: repr← TMOR(t)
3:

4: if repr /∈ reprs then
5: Append repr to reprs
6: end if
7:

8: return index of repr in reprs
9: end procedure

13

The TMOR Problem I:
Mapping Orbits

Determining all orbits usually too costly

Iteratively determine and hash canonical representatives

1: procedure ORBIT IDENTIFIER(t, reprs)
2: repr← TMOR(t)
3:

4: if repr /∈ reprs then
5: Append repr to reprs
6: end if
7:

8: return index of repr in reprs
9: end procedure

14

The TMOR Problem II:
Finding Canonical Orbit Representatives

First approach: explicit orbit enumeration

1: procedure TMOR ORBIT(t, G = 〈S〉)
2: orbit← {}
3:

4: while orbit is changing do
5: for t ′ ∈ orbit, g in S do
6: orbit← orbit ∪ {g(t ′)}
7: end for
8: end while
9:

10: return min(orbit)
11: end procedure

15

The TMOR Problem II:
Finding Canonical Orbit Representatives

Second approach: group enumeration

1: procedure TMOR ITERATE(t, G)
2: repr← t
3:

4: for g ∈ G do
5: if g(t) < repr then
6: repr← g(t)
7: end if
8: end for
9:

10: return repr
11: end procedure

16

The TMOR Problem II:
Finding Canonical Orbit Representatives

Third approach: local search

1: procedure TMOR LOCAL SEARCH(t, G = 〈S〉)
2: repr← t
3:

4: while repr is changing do
5: repr← min({g(repr) | g ∈ S})
6: end while
7:

8: return repr
9: end procedure

17

The TMOR Problem III:
Optimization by Decomposition

Many architecture graphs are separable or hierarchical

Separable: any heterogeneous archictecture

Hierarchical: HAEC

, Kalray

17

The TMOR Problem III:
Optimization by Decomposition

Many architecture graphs are separable or hierarchical

Separable: any heterogeneous archictecture

Hierarchical: HAEC

, Kalray

17

The TMOR Problem III:
Optimization by Decomposition

Many architecture graphs are separable or hierarchical

Separable: any heterogeneous archictecture

Hierarchical: HAEC

, Kalray

17

The TMOR Problem III:
Optimization by Decomposition

Many architecture graphs are separable or hierarchical

Separable: any heterogeneous archictecture

Hierarchical: HAEC

, Kalray

17

The TMOR Problem III:
Optimization by Decomposition

Many architecture graphs are separable or hierarchical

Separable: any heterogeneous archictecture

Hierarchical: HAEC, Kalray

18

The TMOR Problem III:
Optimization by Decomposition

Automorphism groups of such graphs decompose into:

Separable architectures: direct products
G = G1 × G2, |G | = |G1| · |G2| · · · |Gn|

Hierarchical architectures: wreath products
G = Gproto o Gsuper, |G | = |Gproto|deg(Gsuper) · |Gsuper|

Solve TMOR problem separately for components

Decomposition specified by user or detected automatically

Idea based on [Donaldson and Miller, 2009]

18

The TMOR Problem III:
Optimization by Decomposition

Automorphism groups of such graphs decompose into:

Separable architectures: direct products
G = G1 × G2, |G | = |G1| · |G2| · · · |Gn|

Hierarchical architectures: wreath products
G = Gproto o Gsuper, |G | = |Gproto|deg(Gsuper) · |Gsuper|

Solve TMOR problem separately for components

Decomposition specified by user or detected automatically

Idea based on [Donaldson and Miller, 2009]

18

The TMOR Problem III:
Optimization by Decomposition

Automorphism groups of such graphs decompose into:

Separable architectures: direct products
G = G1 × G2, |G | = |G1| · |G2| · · · |Gn|

Hierarchical architectures: wreath products
G = Gproto o Gsuper, |G | = |Gproto|deg(Gsuper) · |Gsuper|

Solve TMOR problem separately for components

Decomposition specified by user or detected automatically

Idea based on [Donaldson and Miller, 2009]

18

The TMOR Problem III:
Optimization by Decomposition

Automorphism groups of such graphs decompose into:

Separable architectures: direct products
G = G1 × G2, |G | = |G1| · |G2| · · · |Gn|

Hierarchical architectures: wreath products
G = Gproto o Gsuper, |G | = |Gproto|deg(Gsuper) · |Gsuper|

Solve TMOR problem separately for components

Decomposition specified by user or detected automatically

Idea based on [Donaldson and Miller, 2009]

18

The TMOR Problem III:
Optimization by Decomposition

Automorphism groups of such graphs decompose into:

Separable architectures: direct products
G = G1 × G2, |G | = |G1| · |G2| · · · |Gn|

Hierarchical architectures: wreath products
G = Gproto o Gsuper, |G | = |Gproto|deg(Gsuper) · |Gsuper|

Solve TMOR problem separately for components

Decomposition specified by user or detected automatically

Idea based on [Donaldson and Miller, 2009]

19

Experimental Results I:
Architectures

Experiments run for: Exynos

, Parallella , HAEC , Kalray

19

Experimental Results I:
Architectures

Experiments run for: Exynos , Parallella

, HAEC , Kalray

19

Experimental Results I:
Architectures

Experiments run for: Exynos , Parallella , HAEC

, Kalray

19

Experimental Results I:
Architectures

Experiments run for: Exynos , Parallella , HAEC , Kalray

19

Experimental Results I:
Architectures

Experiments run for: Exynos , Parallella , HAEC , Kalray

20

Experimental Results II:
TMOR

100% 100% 100% 100%

100% 100% 100%
100%

1e-02

1e-01

1e+00

1e+01

4 8 12 16
k

t/
s

Iterate (mpsym) Iterate (GAP)

Local search (mpsym) Local search (GAP)

Orbits (mpsym) Orbits (GAP)

Exynos TMOR

21

Experimental Results II:
TMOR

100% 100% 100% 100%

100%
100% 100% 100%

1e-03

1e-02

1e-01

1e+00

4 8 12 16
k

t/
s

Iterate (mpsym) Iterate (GAP)

Local search (mpsym) Local search (GAP)

Orbits (mpsym) Orbits (GAP)

Parallella TMOR

22

Experimental Results II:
TMOR

100% 100% 100% 100%

25.92%26.54%29.46%40.56%

1e-02

1e-01

1e+00

1e+01

1e+02

4 8 12 16
k

t/
s

Iterate (mpsym) Iterate* (mpsym)

Local search (mpsym) Local search* (mpsym)

Orbits (mpsym) Orbits* (mpsym)

HAEC TMOR

23

Experimental Results II:
TMOR

100%

100%

100% 100%
4.25e-01

4.50e-01

4.75e-01

5.00e-01

4 8 12 16
k

t/
s

Iterate (mpsym) Local search (mpsym) Orbits (mpsym)

Kalray TMOR

24

Experimental Results II:
TMOR

Lessons learned:

Performance of orbit enumeration depends strongly on k

Local search can be fast and accurate

Decomposition can be very powerful

mpsym outperforms GAP

24

Experimental Results II:
TMOR

Lessons learned:

Performance of orbit enumeration depends strongly on k

Local search can be fast and accurate

Decomposition can be very powerful

mpsym outperforms GAP

24

Experimental Results II:
TMOR

Lessons learned:

Performance of orbit enumeration depends strongly on k

Local search can be fast and accurate

Decomposition can be very powerful

mpsym outperforms GAP

24

Experimental Results II:
TMOR

Lessons learned:

Performance of orbit enumeration depends strongly on k

Local search can be fast and accurate

Decomposition can be very powerful

mpsym outperforms GAP

25

Further Research

Heuristic local search

Partial Automorphism discovery

Inverse Monoid enumeration

Interfacing GAP and C++

25

Further Research

Heuristic local search

Partial Automorphism discovery

Inverse Monoid enumeration

Interfacing GAP and C++

25

Further Research

Heuristic local search

Partial Automorphism discovery

Inverse Monoid enumeration

Interfacing GAP and C++

25

Further Research

Heuristic local search

Partial Automorphism discovery

Inverse Monoid enumeration

Interfacing GAP and C++

26

The End

Thank you for your attention!

27

References

Donaldson, A. F. and Miller, A. (2009).

On the constructive orbit problem.
Ann Math Atrif Intell, 57:1–35.

East, J., Egri-Nagy, A., Mitchell, J., and Péresse, Y. (2019).

Computing finite semigroups.
Journal of Symbolic Computation, 92:110–155.

Goens, A., Siccha, S., and Castrillon, J. (2017).

Symmetry in software synthesis.
ACM Trans. Archit. Code Optim., 14(2).

Holt, D. F. (2005).

Handbook of Computational Group Theory.
CRC Press.

McKay, B. D. and Piperno, A. (2014).

Practical graph isomorphism, ii.
Journal of Symbolic Computation, 60:94 – 112.

Nicolai, T. (2020).
mpsym.
https://github.com/Time0o/mpsym.

https://github.com/Time0o/mpsym

