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Theoretical foundations: [Holt, 2005] and [East et al., 2019]

Important optimizations: [Donaldson and Miller, 2009]



3

Inspirations

Original idea: [Goens et al., 2017]

Theoretical foundations: [Holt, 2005] and [East et al., 2019]

Important optimizations: [Donaldson and Miller, 2009]



3

Inspirations

Original idea: [Goens et al., 2017]

Theoretical foundations: [Holt, 2005] and [East et al., 2019]

Important optimizations: [Donaldson and Miller, 2009]



4

Problem Statement



4

Problem Statement

Want to intelligently map tasks to processing elements

Best choice depends on underlying optimality criteria

Need to perform costly simulation!



4

Problem Statement

Want to intelligently map tasks to processing elements

Best choice depends on underlying optimality criteria

Need to perform costly simulation!



4

Problem Statement

Want to intelligently map tasks to processing elements

Best choice depends on underlying optimality criteria

Need to perform costly simulation!



5

Symmetry Reduction

One approach:

Generate promising mappings based on previous simulations
→ Traverse search space “intelligently”

Another approach:

Partition search space by (partial) symmetry
Only work with representative of each partition
→ “Collapse” search space

Both approaches can be combined!
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Representing Symmetries:
Automorphism Groups
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Representing Partial Symmetries:
Partial Automorphism Inverse Monoids
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Extracting (Partial) Symmetries

Describe MPSoC architecture as architecture graph

Determine Automorphism Group G :

Transform into “equivalent” vertex colored graph
Use nauty [McKay and Piperno, 2014]

Determine Partial Automorphism Inverse Monoid M:

Construct search tree of possible generators
Prune certain subtrees
Not efficient enough in practice
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Extracting (Partial) Symmetries

1 2 3 4

5 6 7 8

⇒ {(1 2)(5 6), (3 4)(7 8)}
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Extracting (Partial) Symmetries

{(1 2), (3 4)}⇒ Base: [1, 3]
Strong Generating Set: {(1 2), (3 4)}
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The TMOR Problem I:
Mapping Orbits

Represent mappings by k-tuples t = (t1, t2, . . . , tk)

Define orbit tG = {((g(t1), g(t2), . . . , g(tk)) | g ∈ G}

Orbits partition search space

Reduce search space to set of canonical orbit representatives
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The TMOR Problem I:
Mapping Orbits

Determining all orbits usually too costly

Iteratively determine and hash canonical representatives

1: procedure ORBIT IDENTIFIER(t, reprs)
2: repr← TMOR(t)
3:

4: if repr /∈ reprs then
5: Append repr to reprs
6: end if
7:

8: return index of repr in reprs
9: end procedure
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The TMOR Problem II:
Finding Canonical Orbit Representatives

First approach: explicit orbit enumeration

1: procedure TMOR ORBIT(t, G = 〈S〉)
2: orbit← {}
3:

4: while orbit is changing do
5: for t ′ ∈ orbit, g in S do
6: orbit← orbit ∪ {g(t ′)}
7: end for
8: end while
9:

10: return min(orbit)
11: end procedure
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The TMOR Problem II:
Finding Canonical Orbit Representatives

Second approach: group enumeration

1: procedure TMOR ITERATE(t, G )
2: repr← t
3:

4: for g ∈ G do
5: if g(t) < repr then
6: repr← g(t)
7: end if
8: end for
9:

10: return repr
11: end procedure
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The TMOR Problem II:
Finding Canonical Orbit Representatives

Third approach: local search

1: procedure TMOR LOCAL SEARCH(t, G = 〈S〉)
2: repr← t
3:

4: while repr is changing do
5: repr← min({g(repr) | g ∈ S})
6: end while
7:

8: return repr
9: end procedure
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Many architecture graphs are separable or hierarchical

Separable: any heterogeneous archictecture

Hierarchical: HAEC

, Kalray
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Automorphism groups of such graphs decompose into:

Separable architectures: direct products
G = G1 × G2, |G | = |G1| · |G2| · · · |Gn|

Hierarchical architectures: wreath products
G = Gproto o Gsuper, |G | = |Gproto|deg(Gsuper) · |Gsuper|

Solve TMOR problem separately for components

Decomposition specified by user or detected automatically
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Experimental Results II:
TMOR
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Decomposition can be very powerful
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The End

Thank you for your attention!
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