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Introduction (I)
Problem statement:
I Infer colours given a grayscale image
I Ill-posed problem due to inherent multimodality
→ network should predict per-pixel colour distributions
→ produce plausible colourization

Input Ground truth Colourized
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Introduction (II)

Applications:
I Colourization of historical images
I Preprocessing step in grayscale image classification
I Representation learning for transfer learning tasks
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Related work (I)

Early approaches to the problem:

I Synthesise colours from reference pictures [Welsh et al. (2002)]

I Colourization as an optimization problem [Levin et al. (2004)]
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Related work (II)

Modern approaches:
I Leverage large-scale data: deep learning approaches with

different architectures and cost functions [Larsson et al.
(2016), Iizuka et al. (2016), Zhang et al. (2016)]

I Use Generative Adversarial Network to automatically learn the
cost function [Nazeri et al. (2018)]

I Exemplar-based colourization with automatic reference
retrieval [He et al. (2018)]
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Data (I)

I Analyze images in the L*a*b* colour space
→ Use L channel as input
→ Use a and b channel as supervisory signals

I Resize images to 256x256 px
I Randomly crop images to 176x176 px during training

Original L channel a channel b channel
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Data (II)

Dataset:
I Subset of ImageNet (42.566 images)
I Semantically related categories (mostly fruits and vegetables)
→ Make training feasible given computational resources
→ Vibrant colours: easy to inspect quality of the results

Examples of images from our training set
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Methods (I): Network Output
Input:
I Luminance channel L

Target:
I Discrete, in-gamut ab output space with Q = 313 bins

Figure from Zhang et al. (2016) 7 / 27



Methods (II): Loss Function

I Raw output: probability distribution Ẑ ∈ [0, 1]H×W×Q

I Obtain Z from ground truth via soft encoding

L(Z , Ẑ ) = −
∑
w ,h

v(Zw ,h)
∑
q

Zw ,h,q · log(Ẑw ,h,q) (1)

I Use class rebalancing to achieve plausible colourizations

v(Zw ,h) ∝
(
(1− λ)p̃ +

λ

Q

)−1

(2)

I p̃ is prior distribution (from ImageNet training set)
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Methods (III): From Colour Probabilities to Point Estimates

I Decode Ẑ to ab ∈ [−110, 110]H×W×2 via Annealed Mean

H(Zh,w ) = E [f (Zh,w )] f (z) =
exp(log(z)/T )∑
q exp(log(z)/T )

(3)

I Can adjust Temperature parameter T ∈ [1, 0)
→ lower T : higher vibrancy
→ higher T : higher spatial consistency

Mean
T = 1 T = 0.77 T = 0.58

Annealed Mean
T = 0.38 T = 0.29 T = 0.14

Mode
T → 0
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Methods (IV): Network Architecture

Input data:
I Luminance channel L

Figure from Zhang et al. (2016)
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Methods (IV): Network Architecture

Feature extraction:
I VGG like network structure
I (atrous) convolution, deconvolution and batchnorm layers
I ReLU activations
I Kernel size 3× 3

Figure from Zhang et al. (2016)
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Methods (IV): Network Architecture

Raw output:
I Probability distribution Z ∈ [0, 1]H×W×Q

Figure from Zhang et al. (2016)
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Methods (IV): Network Architecture

Annealed mean:
I Z ∈ [0, 1]H×W×Q → ab ∈ [−110, 110]H×W×2

Figure from Zhang et al. (2016)
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Training (I): Overview
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Training (II): Optimization

Adam optimizer:
I β1 = .9, β2 = .99
I Weight decay = 10−3
I η = 3.16−5 (constant)
I Batch size = 40
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Training (III): Learning Curve

I ≈ 20 hours of training on NVIDIA Tesla V100
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Examples
Input Larsson et al. Iizuka et al. Zhang et al.

Zhang et al.
(Rebal.)

Ours
(Rebal.)

Ground
Truth
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Perceptual Realism Study
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I 50 randomly chosen validation set images
I 10 participants
I Fooled on average 18.78% of the time
I Photorealistic results only for “easy” images
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Colourization as Preprocessing (I)

Method VGG-16 Top-5 Acc.

Ground truth 92.1
Grayscale 46.4
Random colour 17.4

Zhang et al. 67.7
Ours 81.0
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I Top-5 classification accuracy for 1000 validation set images
I → dramatically improved by colourization!
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Colourization as Preprocessing (II)
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artichoke, globe artichoke −→ head cabbage

I Colourization amplifies certain confusion cases
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Conclusions

I We successfully reproduced the results of Zhang et al. on a
reduced dataset

I We showed how our network can improve grayscale image
classification accuracy

I The network tends to miscolour background objects, future
work might include:
I Exploring post-processing approaches that enforce spatial

consistency
I Segmenting images into fore- and background and colouring

them with separate networks
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Thank you for your attention!
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Learning outcomes (I)

Timo:
I In-depth PyTorch skills, including implementing predefined

architectures from common building blocks and implementing
custom layers

I Increased familiarity with common CNN layers types, including
(separable/transposed/atrous) convolutions, batch
normalization, dropout etc.

I Deeper insight into the colourization problem: Lab colour
space, input encoding and output decoding schemes,
implementation and advantages of different loss functions and
rebalancing schemes and how to assess colourization quality
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Learning outcomes (II)

Álvaro:
I Deeper insight into the implementation of deep learning

projects, concretely CNN concepts and image processing
I Useful programming skills, including PyTorch, remote Google

computational resources, and Linux commands
I Customizing existing algorithms: preprocessing the target,

customizing the loss function and obtaining the final prediction
via an operation over the raw network output
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Learning outcomes (III)

Carolina:
I Better knowledge of deep learning theory (CNN), techniques

(PyTorch) and methodology
I Increased confidence with Google remote computing platforms
I Better understanding of the challenges involved in having to

formulate the colourization problem in a computationally
feasible way
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